Skip to main content
Erschienen in: Rare Metals 7/2022

20.04.2022 | Original Article

A novel Li-ion supercapattery by K-ion vacant ternary perovskite fluoride anode with pseudocapacitive conversion/insertion dual mechanisms

verfasst von: Yong-Fa Huang, Rui Ding, Dan-Feng Ying, Yu-Xi Huang, Tong Yan, Cai-Ni Tan, Xiu-Juan Sun, En-Hui Liu

Erschienen in: Rare Metals | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An innovative K+ vacant ternary perovskite fluoride (K0.89Ni0.02Co0.03Mn0.95F3.0, KNCMF-3#) anode was designed for advanced Li-ion supercapattery (i.e., Li-ion capacitors/batteries, LIC/Bs). Owing to the conversion/insertion dual mechanisms and fast pseudocapacitive control dynamics, the KNCMF-3# electrode exhibits superior electrochemical performance, especially the excellent cycle performance (467% (229 mAh·g−1)/1000 cycles/2 A·g−1). Moreover, the hybrid KNCMF-3#/reduced graphene oxide (rGO) electrode can further increase the electrochemical performance (217–97 mAh·g−1/0.1–3.2 A·g−1, 150% (197 mAh·g−1)/1000 cycles/2 A·g−1). Also, a novel capacitor/battery cathode, activated carbon (AC) + LiFePO4 + graphene (AC + LFP + G), exhibits impressive performance (128–82 mAh·g−1/0.1–3.2 A·g−1, 84%/1000 cycles/2 A·g−1). By the synergistic optimization of anode and cathode, the Li-ion supercapattery KNCMF-3#@rGO//AC + LFP + G demonstrates remarkable performance, for example, 111.9–23.8 Wh·kg−1/0.4–8.0 kW·kg−1/82%/2000 cycles/5 A·g−1/0–4 V, which is superior to KNCMF-3#//AC LICs, KNCMF-3#@rGO//AC LICs, KNCMF-3#//AC + LFP + G LIC/Bs. In all, the novel Li-ion supercapattery idea adds a promising perspective to develop advanced energy storage devices.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Bonaccorso F, Colombo L, Yu GH, Stoller M, Tozzini V, Ferrari AC, Ruoff RV. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501.CrossRef Bonaccorso F, Colombo L, Yu GH, Stoller M, Tozzini V, Ferrari AC, Ruoff RV. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501.CrossRef
[2]
Zurück zum Zitat Yekini SM, Wazir MN. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev. 2014;35:499.CrossRef Yekini SM, Wazir MN. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev. 2014;35:499.CrossRef
[3]
Zurück zum Zitat Li YM, Lu YX, Zhao CL, Hu YS, Titirici MM, Li H, Huang XJ, Chen LQ. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017;7:130.CrossRef Li YM, Lu YX, Zhao CL, Hu YS, Titirici MM, Li H, Huang XJ, Chen LQ. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017;7:130.CrossRef
[4]
Zurück zum Zitat Zheng H, Chen X, Yang Y, Li L, Feng CQ, Wang SQ. Self-assembled uniform double-shelled Co3V2O8 hollow nanospheres as anodes for high-performance Li-ion batteries. Rare Met. 2021;40(12):3485.CrossRef Zheng H, Chen X, Yang Y, Li L, Feng CQ, Wang SQ. Self-assembled uniform double-shelled Co3V2O8 hollow nanospheres as anodes for high-performance Li-ion batteries. Rare Met. 2021;40(12):3485.CrossRef
[5]
Zurück zum Zitat Qin P, Zhang SQ, Yung KKL, Huang ZF, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447.CrossRef Qin P, Zhang SQ, Yung KKL, Huang ZF, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447.CrossRef
[6]
Zurück zum Zitat Wang XF, Shen GZ. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104.CrossRef Wang XF, Shen GZ. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104.CrossRef
[7]
Zurück zum Zitat Aravindan V, Lee YS, Madhavi S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv Energy Mater. 2017;7(17):1602607.CrossRef Aravindan V, Lee YS, Madhavi S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv Energy Mater. 2017;7(17):1602607.CrossRef
[8]
Zurück zum Zitat Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619.CrossRef Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619.CrossRef
[9]
Zurück zum Zitat Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.CrossRef Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.CrossRef
[10]
Zurück zum Zitat Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093.CrossRef Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093.CrossRef
[11]
Zurück zum Zitat Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807.CrossRef Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807.CrossRef
[12]
Zurück zum Zitat Gao P, Chen Z, Gong YX, Zhang R, Liu H, Tang P, Chen XH, Passerini S, Liu JL. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater. 2020;10(14):1903780.CrossRef Gao P, Chen Z, Gong YX, Zhang R, Liu H, Tang P, Chen XH, Passerini S, Liu JL. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater. 2020;10(14):1903780.CrossRef
[13]
Zurück zum Zitat Shi W, Ding R, Xu QL, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anodes for advanced lithium-ion storage driven by surface conversion and insertion hybrid mechanisms. Chem Commun. 2019;55(47):6739.CrossRef Shi W, Ding R, Xu QL, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anodes for advanced lithium-ion storage driven by surface conversion and insertion hybrid mechanisms. Chem Commun. 2019;55(47):6739.CrossRef
[14]
Zurück zum Zitat Choi C, Ashby DS, Butts DM, DeBlock RH, Wei QL, Lau JD. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2020;5(1):5.CrossRef Choi C, Ashby DS, Butts DM, DeBlock RH, Wei QL, Lau JD. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2020;5(1):5.CrossRef
[15]
Zurück zum Zitat Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.CrossRef
[16]
Zurück zum Zitat Chao DL, Zhu CG, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122.CrossRef Chao DL, Zhu CG, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122.CrossRef
[17]
Zurück zum Zitat Ghosh A, Ra EJ, Jin MH, Jeong HK, Kim TH, Biswas C, Lee YH. High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater. 2011;21(13):2541.CrossRef Ghosh A, Ra EJ, Jin MH, Jeong HK, Kim TH, Biswas C, Lee YH. High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater. 2011;21(13):2541.CrossRef
[18]
Zurück zum Zitat Feng N, Meng RJ, Zu LH, Feng YT, Peng CX, Huang JM, Liu GL, Chen BJ, Yang JH. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun. 2019;10(1):1372.CrossRef Feng N, Meng RJ, Zu LH, Feng YT, Peng CX, Huang JM, Liu GL, Chen BJ, Yang JH. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun. 2019;10(1):1372.CrossRef
[19]
Zurück zum Zitat Sun RM, Wei QL, Sheng JZ, Shi CW, An QY, Liu SJ, Mai LQ. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy. 2017;35:396.CrossRef Sun RM, Wei QL, Sheng JZ, Shi CW, An QY, Liu SJ, Mai LQ. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy. 2017;35:396.CrossRef
[20]
Zurück zum Zitat Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828.CrossRef Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828.CrossRef
[21]
Zurück zum Zitat Cheng JL, Xin HL, Zheng HM, Wang B. One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources. 2013;232:152.CrossRef Cheng JL, Xin HL, Zheng HM, Wang B. One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources. 2013;232:152.CrossRef
[22]
Zurück zum Zitat Hwang JY, El-Kady MF, Wang Y, Wang LS, Shao YL, Marsh K, Ko JM, Kaner RB. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015;18:57.CrossRef Hwang JY, El-Kady MF, Wang Y, Wang LS, Shao YL, Marsh K, Ko JM, Kaner RB. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015;18:57.CrossRef
[23]
Zurück zum Zitat Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy. 2016;25:193.CrossRef Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy. 2016;25:193.CrossRef
[24]
Zurück zum Zitat Xu QL, Ding R, Shi W, Ying DF, Huang YF, Yan T, Gao P, Sun XJ, Liu EH. Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J Mater Chem A. 2019;7(14):8315.CrossRef Xu QL, Ding R, Shi W, Ying DF, Huang YF, Yan T, Gao P, Sun XJ, Liu EH. Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J Mater Chem A. 2019;7(14):8315.CrossRef
[25]
Zurück zum Zitat Ying DF, Ding R, Huang YF, Shi W, Xu QL, Tan CN, Sun XJ, Gao P, Liu EH. Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids. J Mater Chem A. 2019;7(31):18257.CrossRef Ying DF, Ding R, Huang YF, Shi W, Xu QL, Tan CN, Sun XJ, Gao P, Liu EH. Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids. J Mater Chem A. 2019;7(31):18257.CrossRef
[26]
Zurück zum Zitat Rui K, Wen ZY, Lu Y, Jin J, Shen C. One-step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism. Adv Energy Mater. 2015;5(7):1401716.CrossRef Rui K, Wen ZY, Lu Y, Jin J, Shen C. One-step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism. Adv Energy Mater. 2015;5(7):1401716.CrossRef
[27]
Zurück zum Zitat Huang YF, Li XD, Ding R, Ying DF, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Tetragonal MF2 (M=Ni, Co) micro/nanocrystals anodes for lithium/sodium-ion capacitors. Electrochim Acta. 2020;329:135138.CrossRef Huang YF, Li XD, Ding R, Ying DF, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Tetragonal MF2 (M=Ni, Co) micro/nanocrystals anodes for lithium/sodium-ion capacitors. Electrochim Acta. 2020;329:135138.CrossRef
[28]
Zurück zum Zitat Huang YF, Ding R, Ying DF, Shi W, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn–O–F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors. Nanoscale Adv. 2019;1(12):4669.CrossRef Huang YF, Ding R, Ying DF, Shi W, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn–O–F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors. Nanoscale Adv. 2019;1(12):4669.CrossRef
[30]
Zurück zum Zitat Li X, Sun X, Hu X, Fan F, Cai S, Zheng C, Stucky GD. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143.CrossRef Li X, Sun X, Hu X, Fan F, Cai S, Zheng C, Stucky GD. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143.CrossRef
[31]
Zurück zum Zitat Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.CrossRef
[32]
Zurück zum Zitat Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukela AK. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc. 2011;133(40):16291.CrossRef Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukela AK. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc. 2011;133(40):16291.CrossRef
[33]
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.CrossRef Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.CrossRef
[34]
Zurück zum Zitat Kim H, Hong JY, Park YU, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015;25(4):534.CrossRef Kim H, Hong JY, Park YU, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015;25(4):534.CrossRef
[35]
Zurück zum Zitat Lim E, Jo C, Kim H, Kim MH, Mun Y, Chun JY, Ye YJ, Hwang J, Ha KS, Roh KC, Kang K, Yoon S, Lee J. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano. 2015;9(7):7497.CrossRef Lim E, Jo C, Kim H, Kim MH, Mun Y, Chun JY, Ye YJ, Hwang J, Ha KS, Roh KC, Kang K, Yoon S, Lee J. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano. 2015;9(7):7497.CrossRef
[36]
Zurück zum Zitat Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces. 2012;4(12):7007.CrossRef Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces. 2012;4(12):7007.CrossRef
[37]
Zurück zum Zitat Li LL, Peng SJ, Wang J, Cheah YL, Teh P, Ko Y, Wong CL, Srinivasan M. Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. ACS Appl Mater Interfaces. 2012;4(11):6005.CrossRef Li LL, Peng SJ, Wang J, Cheah YL, Teh P, Ko Y, Wong CL, Srinivasan M. Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. ACS Appl Mater Interfaces. 2012;4(11):6005.CrossRef
[38]
Zurück zum Zitat Xiao LF, Cao YL, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie ZM, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef Xiao LF, Cao YL, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie ZM, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.CrossRef
[39]
Zurück zum Zitat Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM. Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc. 2001;148(4):A285.CrossRef Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM. Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc. 2001;148(4):A285.CrossRef
[40]
Zurück zum Zitat Zhang H, Zhou YN, Sun Q, Fu ZW. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci. 2008;10(9):1166.CrossRef Zhang H, Zhou YN, Sun Q, Fu ZW. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci. 2008;10(9):1166.CrossRef
[41]
Zurück zum Zitat Teng YT, Wei FX, Yazami R. Synthesis of NixCo(1–x)F2 (x = 0, 0.25, 0.50, 0.75, 1.0) and application in lithium ion batteries. J Alloys Compd. 2015;653:434.CrossRef Teng YT, Wei FX, Yazami R. Synthesis of NixCo(1–x)F2 (x = 0, 0.25, 0.50, 0.75, 1.0) and application in lithium ion batteries. J Alloys Compd. 2015;653:434.CrossRef
[42]
Zurück zum Zitat Balaya P, Li H, Kienle L, Maier J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater. 2003;13(8):621.CrossRef Balaya P, Li H, Kienle L, Maier J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater. 2003;13(8):621.CrossRef
[43]
Zurück zum Zitat Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater. 2003;15(9):736.CrossRef Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater. 2003;15(9):736.CrossRef
[44]
Zurück zum Zitat Li Q, Li HS, Xia QT, Hu ZQ, Zhu Y, Yan SS, Ge C, Zhang QH, Wang XX, Shang XT, Fan ST, Long YZ, Gu L, Miao GX, Yu GH, Moodera JS. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2021;20(1):76.CrossRef Li Q, Li HS, Xia QT, Hu ZQ, Zhu Y, Yan SS, Ge C, Zhang QH, Wang XX, Shang XT, Fan ST, Long YZ, Gu L, Miao GX, Yu GH, Moodera JS. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2021;20(1):76.CrossRef
[45]
Zurück zum Zitat Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc. 2002;149(5):A627.CrossRef Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc. 2002;149(5):A627.CrossRef
[46]
Zurück zum Zitat Zhang J, Shi ZQ, Wang CY. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta. 2014;125:22.CrossRef Zhang J, Shi ZQ, Wang CY. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta. 2014;125:22.CrossRef
[47]
Zurück zum Zitat Zhang J, Wu HZ, Wang J, Shi JL, Shi ZQ. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochim Acta. 2015;182:156.CrossRef Zhang J, Wu HZ, Wang J, Shi JL, Shi ZQ. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochim Acta. 2015;182:156.CrossRef
[48]
Zurück zum Zitat Wang HW, Guan C, Wang XF, Fan HJ. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small. 2015;11(12):1470.CrossRef Wang HW, Guan C, Wang XF, Fan HJ. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small. 2015;11(12):1470.CrossRef
[49]
Zurück zum Zitat Wang HW, Zhang Y, Ang HX, Zhang YQ, Tan HT, Zhang YF, Guo YY, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan QY. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082.CrossRef Wang HW, Zhang Y, Ang HX, Zhang YQ, Tan HT, Zhang YF, Guo YY, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan QY. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082.CrossRef
Metadaten
Titel
A novel Li-ion supercapattery by K-ion vacant ternary perovskite fluoride anode with pseudocapacitive conversion/insertion dual mechanisms
verfasst von
Yong-Fa Huang
Rui Ding
Dan-Feng Ying
Yu-Xi Huang
Tong Yan
Cai-Ni Tan
Xiu-Juan Sun
En-Hui Liu
Publikationsdatum
20.04.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01979-2

Weitere Artikel der Ausgabe 7/2022

Rare Metals 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.