Skip to main content
Erschienen in: Rare Metals 7/2022

20.04.2022 | Original Article

Single-bit full adder and logic gate based on synthetic antiferromagnetic bilayer skyrmions

verfasst von: Kai Yu Mak, Jing Xia, Xi-Chao Zhang, Li Li, Mouad Fattouhi, Motohiko Ezawa, Xiao-Xi Liu, Yan Zhou

Erschienen in: Rare Metals | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Skyrmion-based devices are promising candidates for non-volatile memory and low-delay time computation. Many skyrmion-based devices execute operation by controlling skyrmion trajectory, which can be impeded by the skyrmion Hall effect. Here, the design of skyrmion-based arithmetic devices built on synthetic antiferromagnetic (SyAF) structures is presented, where the structure can greatly suppress skyrmion Hall effect. In this study, the operations of skyrmion-based half adder, full adder, and XOR logic gate are executed by introducing geometric notches and tilted edges, which can annihilate or diverge skyrmion. Performance of these skyrmion-based devices is evaluated, where the delay time and energy-delay product of the single-bit full adder are 1.95 ns and 2.50 × 10−22 Js, which are only 12% and 79% those of the previously proposed skyrmion-based single-bit full adder. This improvement is significant in the construction of ripple-carry adder and ripple-carry adder-subtractor. Therefore, our skyrmion-based SyAF arithmetic device is a promising candidate to develop high-speed spintronic devices.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat nanotechnol. 2013;8:152.CrossRef Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat nanotechnol. 2013;8:152.CrossRef
[2]
Zurück zum Zitat Skyrme THR. A Non-Linear Field Theory, Selected Papers, with Commentary, of Tony Hilton Royle Skyrme. World Scientific Publishing Co. Pte. Ltd. Singapore. 1994.195. Skyrme THR. A Non-Linear Field Theory, Selected Papers, with Commentary, of Tony Hilton Royle Skyrme. World Scientific Publishing Co. Pte. Ltd. Singapore. 1994.195.
[3]
Zurück zum Zitat Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.CrossRef Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.CrossRef
[4]
Zurück zum Zitat Khanh ND, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat nanotechnol. 2020;15(6):444.CrossRef Khanh ND, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat nanotechnol. 2020;15(6):444.CrossRef
[5]
Zurück zum Zitat Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA. Spin transfer torques in MnSi at ultralow current densities. Sci. 2010;330(6011):1648.CrossRef Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA. Spin transfer torques in MnSi at ultralow current densities. Sci. 2010;330(6011):1648.CrossRef
[6]
Zurück zum Zitat Garcia-Sanchez F, Sampaio J, Reyren N, Cros V, Kim J. A skyrmion-based spin-torque nano-oscillator. New J. Phys. 2016; 18:075011. Garcia-Sanchez F, Sampaio J, Reyren N, Cros V, Kim J. A skyrmion-based spin-torque nano-oscillator. New J. Phys. 2016; 18:075011.
[7]
Zurück zum Zitat Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P. Skyrmion lattice in a chiral magnet. Sci. 2009;323(5916):915.CrossRef Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P. Skyrmion lattice in a chiral magnet. Sci. 2009;323(5916):915.CrossRef
[8]
Zurück zum Zitat Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R. Writing and deleting single magnetic skyrmions. Sci. 2013;341(6146):636.CrossRef Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R. Writing and deleting single magnetic skyrmions. Sci. 2013;341(6146):636.CrossRef
[9]
Zurück zum Zitat Tokura Y, Kanazawa N. Magnetic skyrmion materials. Chem. Rev. 2020;121(5):2857. Tokura Y, Kanazawa N. Magnetic skyrmion materials. Chem. Rev. 2020;121(5):2857.
[10]
Zurück zum Zitat Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C, Friedman JS. Skyrmion logic system for large-scale reversible computation. Phys. Rev. Appl. 2019;12(6):064053. Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C, Friedman JS. Skyrmion logic system for large-scale reversible computation. Phys. Rev. Appl. 2019;12(6):064053.
[11]
Zurück zum Zitat Liu JP, Zhang Z, Zhao G. Skyrmions: Topological Structures, Properties, and Applications. Boca Raton: CRC Press; 2016. 1.CrossRef Liu JP, Zhang Z, Zhao G. Skyrmions: Topological Structures, Properties, and Applications. Boca Raton: CRC Press; 2016. 1.CrossRef
[12]
Zurück zum Zitat Zhang X, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci Rep. 2015;5:1. Zhang X, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci Rep. 2015;5:1.
[13]
Zurück zum Zitat Song M, Park MG, Ko S, Jang SK, Je M, Kim KJ. Logic device based on skyrmion annihilation. IEEE Trans Electron Devices. 68(4):1939. Song M, Park MG, Ko S, Jang SK, Je M, Kim KJ. Logic device based on skyrmion annihilation. IEEE Trans Electron Devices. 68(4):1939.
[14]
Zurück zum Zitat Xing X, Pong PW, Zhou Y. Skyrmion domain wall collision and domain wall-gated skyrmion logic. Phys Rev. B 2016;94(5):054408. Xing X, Pong PW, Zhou Y. Skyrmion domain wall collision and domain wall-gated skyrmion logic. Phys Rev. B 2016;94(5):054408.
[15]
Zurück zum Zitat He Z, Angizi S, Fan D. Current-induced dynamics of multiple skyrmions with domain-wall pair and skyrmion-based majority gate design. IEEE Magn Lett. 2017;8:1. He Z, Angizi S, Fan D. Current-induced dynamics of multiple skyrmions with domain-wall pair and skyrmion-based majority gate design. IEEE Magn Lett. 2017;8:1.
[16]
Zurück zum Zitat Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L. Reconfigurable skyrmion logic gates. Nano Lett. 2018;18(2):1180.CrossRef Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L. Reconfigurable skyrmion logic gates. Nano Lett. 2018;18(2):1180.CrossRef
[17]
Zurück zum Zitat Mankalale MG, Zhao Z, Wang JP, Sapatnekar SS. SkyLogic—a proposal for a skyrmion-based logic device. IEEE Trans Electron Devices. 2019;66(4):1990.CrossRef Mankalale MG, Zhao Z, Wang JP, Sapatnekar SS. SkyLogic—a proposal for a skyrmion-based logic device. IEEE Trans Electron Devices. 2019;66(4):1990.CrossRef
[18]
Zurück zum Zitat Zhang Z, Zhu Y, Zhang Y, Zhang K, Nan J, Zheng Z, Zhang Y, Zhao W. Skyrmion-based ultra-low power electric-field-controlled reconfigurable (SUPER) logic gate. IEEE Electron Device Lett. 2019;40(12):1984.CrossRef Zhang Z, Zhu Y, Zhang Y, Zhang K, Nan J, Zheng Z, Zhang Y, Zhao W. Skyrmion-based ultra-low power electric-field-controlled reconfigurable (SUPER) logic gate. IEEE Electron Device Lett. 2019;40(12):1984.CrossRef
[19]
Zurück zum Zitat Al AZ, Chen MC, Roy K. Skyrmion sensor-based low-power global interconnects. IEEE Trans Magn. 2017;53(1):1. Al AZ, Chen MC, Roy K. Skyrmion sensor-based low-power global interconnects. IEEE Trans Magn. 2017;53(1):1.
[20]
Zurück zum Zitat Zhang H, Zhu D, Kang W, Zhang Y, Zhao W. Stochastic computing implemented by skyrmionic logic devices. Phys. Rev. Appl. 2020;13(5): 054049. Zhang H, Zhu D, Kang W, Zhang Y, Zhao W. Stochastic computing implemented by skyrmionic logic devices. Phys. Rev. Appl. 2020;13(5): 054049.
[21]
Zurück zum Zitat Luo S, You L. Skyrmion devices for memory and logic applications. APL Mater. 2021;9(5):050901. Luo S, You L. Skyrmion devices for memory and logic applications. APL Mater. 2021;9(5):050901.
[22]
Zurück zum Zitat Jiang Y, Al-Sheraidah A, Wang Y, Sha E, Chung JG. A novel multiplexer-based low-power full adder. IEEE Trans. Circuits Syst II Express Briefs. 2004;51(7):345.CrossRef Jiang Y, Al-Sheraidah A, Wang Y, Sha E, Chung JG. A novel multiplexer-based low-power full adder. IEEE Trans. Circuits Syst II Express Briefs. 2004;51(7):345.CrossRef
[23]
Zurück zum Zitat Bhattacharyya P, Kundu B, Ghosh S, Kumar V, Dandapat A. Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. IEEE Trans Very Large Scale Integr VLSI Syst. 2015;23(10):2001.CrossRef Bhattacharyya P, Kundu B, Ghosh S, Kumar V, Dandapat A. Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. IEEE Trans Very Large Scale Integr VLSI Syst. 2015;23(10):2001.CrossRef
[24]
Zurück zum Zitat Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov OA, Förster J. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat Phys. 2017;13(2):170.CrossRef Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov OA, Förster J. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat Phys. 2017;13(2):170.CrossRef
[25]
Zurück zum Zitat Juge R, Je SG, de Souza Chaves D, Buda-Prejbeanu LD, Peña-Garcia J, Nath J, Miron IM, Rana KG, Aballe L, Foerster M. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 2019;12(4):044007. Juge R, Je SG, de Souza Chaves D, Buda-Prejbeanu LD, Peña-Garcia J, Nath J, Miron IM, Rana KG, Aballe L, Foerster M. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 2019;12(4):044007.
[26]
Zurück zum Zitat Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson JE, Cheng X, Heinonen O, Wang KL, Zhou Y, Hoffmann A, Suzanne GE te Velthuis. Direct observation of the skyrmion Hall effect. Nat. Phys. 2016;13(2):162. Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson JE, Cheng X, Heinonen O, Wang KL, Zhou Y, Hoffmann A, Suzanne GE te Velthuis. Direct observation of the skyrmion Hall effect. Nat. Phys. 2016;13(2):162.
[27]
Zurück zum Zitat Litzius K, Leliaert J, Bassirian P, Rodrigues D, Kromin S, Lemesh I, Zazvorka J, Lee KJ, Mulkers J, Kerber N. The role of temperature and drive current in skyrmion dynamics. Nat Electron. 2020;3:30.CrossRef Litzius K, Leliaert J, Bassirian P, Rodrigues D, Kromin S, Lemesh I, Zazvorka J, Lee KJ, Mulkers J, Kerber N. The role of temperature and drive current in skyrmion dynamics. Nat Electron. 2020;3:30.CrossRef
[28]
Zurück zum Zitat Zeissler K, Finizio S, Barton C, Huxtable AJ, Massey J, Raabe J, Sadovnikov AV, Nikitov SA, Brearton R, Hesjedal T. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers. Nat comm. 2020;11:1.CrossRef Zeissler K, Finizio S, Barton C, Huxtable AJ, Massey J, Raabe J, Sadovnikov AV, Nikitov SA, Brearton R, Hesjedal T. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers. Nat comm. 2020;11:1.CrossRef
[29]
Zurück zum Zitat Büttner F, Lemesh I, Beach GS. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci rep. 2018;8:1.CrossRef Büttner F, Lemesh I, Beach GS. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci rep. 2018;8:1.CrossRef
[30]
Zurück zum Zitat Legrand W, Ronceray N, Reyren N, Maccariello D, Cros V, Fert A. Modeling the shape of axisymmetric skyrmions in magnetic multilayers. Phys. Rev. Appl. 2018;10(6):064042. Legrand W, Ronceray N, Reyren N, Maccariello D, Cros V, Fert A. Modeling the shape of axisymmetric skyrmions in magnetic multilayers. Phys. Rev. Appl. 2018;10(6):064042.
[31]
Zurück zum Zitat Maccariello D, Legrand W, Reyren N, Ajejas F, Bouzehouane K, Collin S, George JM, Cros V, Fert A. Electrical signature of noncollinear magnetic textures in synthetic antiferromagnets. Phys. Rev. Appl. 2020:14(5):051001. Maccariello D, Legrand W, Reyren N, Ajejas F, Bouzehouane K, Collin S, George JM, Cros V, Fert A. Electrical signature of noncollinear magnetic textures in synthetic antiferromagnets. Phys. Rev. Appl. 2020:14(5):051001.
[32]
Zurück zum Zitat Zhang X, Zhou Y, Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat comm. 2016;7:10293.CrossRef Zhang X, Zhou Y, Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat comm. 2016;7:10293.CrossRef
[33]
Zurück zum Zitat Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mat. 2020;19(1):34.CrossRef Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mat. 2020;19(1):34.CrossRef
[34]
Zurück zum Zitat Zhang X, Ezawa M, Zhou Y. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks. Phys. Rev. B. 2016;94(6):064406. Zhang X, Ezawa M, Zhou Y. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks. Phys. Rev. B. 2016;94(6):064406.
[35]
Zurück zum Zitat Juge R, Bairagi K, Rana KG, Vogel J, Sall M, Mailly D, Pham VT, Zhang Q, Sisodia N, Foerster M, Aballe L, Belmeguenai M, Roussigné Y, Auffret S, Buda-Prejbeanu LD, Gaudin G, Ravelosona D, Boulle O. Helium ions put magnetic skyrmions on the track. Nano Lett. 2021;21(7):2989.CrossRef Juge R, Bairagi K, Rana KG, Vogel J, Sall M, Mailly D, Pham VT, Zhang Q, Sisodia N, Foerster M, Aballe L, Belmeguenai M, Roussigné Y, Auffret S, Buda-Prejbeanu LD, Gaudin G, Ravelosona D, Boulle O. Helium ions put magnetic skyrmions on the track. Nano Lett. 2021;21(7):2989.CrossRef
[36]
Zurück zum Zitat Ohara K, Zhang X, Chen Y, Wei Z, Ma Y, Xia J, Zhou Y, Liu X. Confinement and protection of skyrmions by patterns of modified magnetic properties. Nano Lett. 2021;21(10):4320.CrossRef Ohara K, Zhang X, Chen Y, Wei Z, Ma Y, Xia J, Zhou Y, Liu X. Confinement and protection of skyrmions by patterns of modified magnetic properties. Nano Lett. 2021;21(10):4320.CrossRef
[37]
Zurück zum Zitat Tomasello R, Puliafito V, Martinez E, Manchon A, Ricci M, Carpentieri M, Finocchio G. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion. J Phys D Appl Phys. 2017;50(32):325302. Tomasello R, Puliafito V, Martinez E, Manchon A, Ricci M, Carpentieri M, Finocchio G. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion. J Phys D Appl Phys. 2017;50(32):325302.
[38]
Zurück zum Zitat Yoo MW, Cros V, Kim JV. Current-driven skyrmion expulsion from magnetic nanostrips. Phys. Rev. B. 2017; 95(18):184423. Yoo MW, Cros V, Kim JV. Current-driven skyrmion expulsion from magnetic nanostrips. Phys. Rev. B. 2017; 95(18):184423.
[39]
Zurück zum Zitat Song M, Moon KW, Yang S, Hwang C, Kim KJ. Guiding of dynamic skyrmions using chiral magnetic domain wall. Appl. Phys. Express. 2020;13(6):063002. Song M, Moon KW, Yang S, Hwang C, Kim KJ. Guiding of dynamic skyrmions using chiral magnetic domain wall. Appl. Phys. Express. 2020;13(6):063002.
[40]
Zurück zum Zitat Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Adv. 2014;4(10):107133. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Adv. 2014;4(10):107133.
[41]
Zurück zum Zitat Bindal N, Ian CAC, Lew WS, Kaushik BK. Antiferromagnetic skyrmion repulsion based artificial neuron device. Nanotechnology. 2021;32(21):215204. Bindal N, Ian CAC, Lew WS, Kaushik BK. Antiferromagnetic skyrmion repulsion based artificial neuron device. Nanotechnology. 2021;32(21):215204.
[42]
Zurück zum Zitat Fattouhi M, Mak KY, Zhou Y, Zhang X, Liu X, El Hafidi M. Logic gates based on synthetic antiferromagnetic bilayer skyrmions. Phys Rev Appl. 2021;16(1):014040. Fattouhi M, Mak KY, Zhou Y, Zhang X, Liu X, El Hafidi M. Logic gates based on synthetic antiferromagnetic bilayer skyrmions. Phys Rev Appl. 2021;16(1):014040.
[43]
Zurück zum Zitat Maccariello D, Legrand W, Reyren N, Ajejas F, Bouzehouane K, Collin S, George JM, Cros V, Fert A. Electrical signature of noncollinear magnetic textures in synthetic antiferromagnets. Phys Rev Appl. 2020;14(5):051001. Maccariello D, Legrand W, Reyren N, Ajejas F, Bouzehouane K, Collin S, George JM, Cros V, Fert A. Electrical signature of noncollinear magnetic textures in synthetic antiferromagnets. Phys Rev Appl. 2020;14(5):051001.
[44]
Zurück zum Zitat Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater. 2020;19(1):34.CrossRef Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater. 2020;19(1):34.CrossRef
[45]
Zurück zum Zitat Liu E, Wu YC, Couet S, Mertens S, Rao S, Kim W, Garello K, Crotti D, Van Elshocht S, De Boeck J. Synthetic-ferromagnet pinning layers enabling top-pinned magnetic tunnel junctions for high-density embedded magnetic random-access memory. Phys Rev Appl. 2018;10(5):054054. Liu E, Wu YC, Couet S, Mertens S, Rao S, Kim W, Garello K, Crotti D, Van Elshocht S, De Boeck J. Synthetic-ferromagnet pinning layers enabling top-pinned magnetic tunnel junctions for high-density embedded magnetic random-access memory. Phys Rev Appl. 2018;10(5):054054.
[46]
Zurück zum Zitat Gilbert TL. A phenomenological theory of damping in ferromagnetic materials. IEEE trans. Magn. 2004;40(6):3443.CrossRef Gilbert TL. A phenomenological theory of damping in ferromagnetic materials. IEEE trans. Magn. 2004;40(6):3443.CrossRef
[47]
Zurück zum Zitat Landau L, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Perspect Theoretical Phys. 1992:51. Landau L, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Perspect Theoretical Phys. 1992:51.
[48]
Zurück zum Zitat Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys Rev B. 2016;94(9):094420. Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys Rev B. 2016;94(9):094420.
[49]
Zurück zum Zitat Zhang H, Zhu D, Kang W, Zhang Y, Zhao W. Stochastic computing implemented by skyrmionic logic devices. Phys Rev Appl. 2020;13(5):054049. Zhang H, Zhu D, Kang W, Zhang Y, Zhao W. Stochastic computing implemented by skyrmionic logic devices. Phys Rev Appl. 2020;13(5):054049.
[50]
Zurück zum Zitat Liang J, Wang W, Du H, Hallal A, Garcia K, Chshiev M, Fert A, Yang H. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys Rev B. 2020;101(18):184401. Liang J, Wang W, Du H, Hallal A, Garcia K, Chshiev M, Fert A, Yang H. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys Rev B. 2020;101(18):184401.
[51]
Zurück zum Zitat Jadaun P, Register LF, Banerjee SK. The microscopic origin of DMI in magnetic bilayers and prediction of giant DMI in new bilayers. NPJ Comput Mater. 2020;6(1):88. Jadaun P, Register LF, Banerjee SK. The microscopic origin of DMI in magnetic bilayers and prediction of giant DMI in new bilayers. NPJ Comput Mater. 2020;6(1):88.
[52]
Zurück zum Zitat Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat nanotechnol. 2013;8(11):839.CrossRef Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat nanotechnol. 2013;8(11):839.CrossRef
[53]
Zurück zum Zitat Veeramachaneni S, Srinivas MB. New improved 1-bit full adder cells. 2008 Canadian Conference on Electrical and Computer Engineering. Niagara Falls. ON; 2008:000735. Veeramachaneni S, Srinivas MB. New improved 1-bit full adder cells. 2008 Canadian Conference on Electrical and Computer Engineering. Niagara Falls. ON; 2008:000735.
[54]
Zurück zum Zitat Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey J. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nature Electronics. 2018;1(3):172.CrossRef Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey J. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nature Electronics. 2018;1(3):172.CrossRef
[55]
Zurück zum Zitat Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef
[56]
Zurück zum Zitat Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electronic Mater. 2019;5(7):1900176.CrossRef Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electronic Mater. 2019;5(7):1900176.CrossRef
Metadaten
Titel
Single-bit full adder and logic gate based on synthetic antiferromagnetic bilayer skyrmions
verfasst von
Kai Yu Mak
Jing Xia
Xi-Chao Zhang
Li Li
Mouad Fattouhi
Motohiko Ezawa
Xiao-Xi Liu
Yan Zhou
Publikationsdatum
20.04.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01981-8

Weitere Artikel der Ausgabe 7/2022

Rare Metals 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.