Skip to main content
Erschienen in: Physics of Metals and Metallography 14/2021

18.08.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Novel Refractory High Entropy Alloy CrHfNbZrTa0.5: Phase Analysis, Microstructure, and Compressive Properties

verfasst von: J. J. Yi, L. Wang, L. Yang, M. Q. Xu

Erschienen in: Physics of Metals and Metallography | Ausgabe 14/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new refractory alloy, CrHfNbZrTa0.5, was prepared by a vacuum arc-melting, and its phase analysis, microstructures, and compressive properties in as-cast and annealed conditions were investigated. The phase components of the as-cast CrHfNbZrTa0.5 alloy were mainly composed of BCC + Laves phases, while an extra HCP phase emerged after annealing. The yield strength of the as-cast and annealed alloys were 1457 and 1517 MPa respectively, both which are significantly larger than 929 MPa of the most concerned HfNbTaTiZr. The relatively stable high-strength of the as-cast and annealed alloys might originate from the high ductility-brittle temperature and the intrinsic strength of the Cr-containing Laves phase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. N. Senkov and C.F. Woodward, “Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy,” Mater. Sci. Eng., A 529, 311–320 (2011).CrossRef O. N. Senkov and C.F. Woodward, “Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy,” Mater. Sci. Eng., A 529, 311–320 (2011).CrossRef
2.
Zurück zum Zitat É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, “Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys,” Int. J. Refract. Met. Hard Mater. 47, 131–138 (2014).CrossRef É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, “Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys,” Int. J. Refract. Met. Hard Mater. 47, 131–138 (2014).CrossRef
3.
Zurück zum Zitat G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J. P. Couzinie, L. Perriere, T. Chauveau, and I. Guillot, “Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy,” Mater. Sci. Eng., A 654, 30–38 (2016).CrossRef G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J. P. Couzinie, L. Perriere, T. Chauveau, and I. Guillot, “Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy,” Mater. Sci. Eng., A 654, 30–38 (2016).CrossRef
4.
Zurück zum Zitat S. Maiti and W. Steurer, “Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy,” Acta Mater. 106, 87–97 (2016).CrossRef S. Maiti and W. Steurer, “Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy,” Acta Mater. 106, 87–97 (2016).CrossRef
5.
Zurück zum Zitat V. Soni, O. N. Senkov, B. Gwalani, D. B. Miracle, and R. Banerjee, “Microstructural design for improving ductility of an initially brittle refractory high entropy alloy,” Sci. Rep. 8, 8816 (2018).CrossRef V. Soni, O. N. Senkov, B. Gwalani, D. B. Miracle, and R. Banerjee, “Microstructural design for improving ductility of an initially brittle refractory high entropy alloy,” Sci. Rep. 8, 8816 (2018).CrossRef
6.
Zurück zum Zitat N. N. Guo, L. Wang, L.S. Luo, X. Z. Li, R. R. Chen, Y. Q. Su, J. J. Guo, and H. Z. Fu, “Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite,” Intermetallics 69, 74–77 (2016).CrossRef N. N. Guo, L. Wang, L.S. Luo, X. Z. Li, R. R. Chen, Y. Q. Su, J. J. Guo, and H. Z. Fu, “Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite,” Intermetallics 69, 74–77 (2016).CrossRef
7.
Zurück zum Zitat O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011).CrossRef O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011).CrossRef
8.
Zurück zum Zitat K. C. Lo, H. Murakami, J. W. Yeh, and A. C. Yeh, “Oxidation behavior of a novel refractory high entropy alloy at elevated temperatures,” Intermetallics 119, 106711 (2020).CrossRef K. C. Lo, H. Murakami, J. W. Yeh, and A. C. Yeh, “Oxidation behavior of a novel refractory high entropy alloy at elevated temperatures,” Intermetallics 119, 106711 (2020).CrossRef
9.
Zurück zum Zitat B. Gorr, F. Müller, M. Azim, H. J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, “High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition,” Oxid. Met. 88, 339–349 (2017).CrossRef B. Gorr, F. Müller, M. Azim, H. J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, “High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition,” Oxid. Met. 88, 339–349 (2017).CrossRef
10.
Zurück zum Zitat O. A. Waseem, J. Lee, H. M. Lee, and H. J. Ryu, “The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials,” Mater. Chem. Phys. 210, 87–94 (2018).CrossRef O. A. Waseem, J. Lee, H. M. Lee, and H. J. Ryu, “The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials,” Mater. Chem. Phys. 210, 87–94 (2018).CrossRef
11.
Zurück zum Zitat Z. D. Han, H. W. Luan, X. Liu, N. Chen, X. Y. Li, Y. Shao, and K. F. Yao, “Microstructures and mechanical properties of TiNbMoTaW refractory high-entropy alloys,” Mater. Sci. Eng., A 712, 380–385 (2018).CrossRef Z. D. Han, H. W. Luan, X. Liu, N. Chen, X. Y. Li, Y. Shao, and K. F. Yao, “Microstructures and mechanical properties of TiNbMoTaW refractory high-entropy alloys,” Mater. Sci. Eng., A 712, 380–385 (2018).CrossRef
12.
Zurück zum Zitat A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, “Dry-sliding wear response of MoTaWNbV high entropy alloy,” Adv. Eng. Mater. 19, 1600535 (2017).CrossRef A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, “Dry-sliding wear response of MoTaWNbV high entropy alloy,” Adv. Eng. Mater. 19, 1600535 (2017).CrossRef
13.
Zurück zum Zitat O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, “Development and exploration of refractory high entropy alloys—A review,” J. Mater. Res. 33, 3092–3128 (2018).CrossRef O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, “Development and exploration of refractory high entropy alloys—A review,” J. Mater. Res. 33, 3092–3128 (2018).CrossRef
14.
Zurück zum Zitat O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd. 509, 6043–6048 (2011).CrossRef O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd. 509, 6043–6048 (2011).CrossRef
15.
Zurück zum Zitat O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” J. Mater. Sci. 47, 4062–4074 (2012).CrossRef O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” J. Mater. Sci. 47, 4062–4074 (2012).CrossRef
16.
Zurück zum Zitat O. N. Senkov and S. L. Semiatin, “Microstructure and properties of a refractory high-entropy alloy after cold working,” J. Alloys Compd. 649, 1110–1123 (2015).CrossRef O. N. Senkov and S. L. Semiatin, “Microstructure and properties of a refractory high-entropy alloy after cold working,” J. Alloys Compd. 649, 1110–1123 (2015).CrossRef
17.
Zurück zum Zitat Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019).CrossRef Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019).CrossRef
18.
Zurück zum Zitat O. N. Senkov, S. V. Senkova, and C. Woodward, “Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys,” Acta Mater. 68, 214–228 (2014).CrossRef O. N. Senkov, S. V. Senkova, and C. Woodward, “Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys,” Acta Mater. 68, 214–228 (2014).CrossRef
19.
Zurück zum Zitat C. M. Lin, C. C. Juan, C. H. Chang, C. W. Tsai, and J. W. Yeh, “Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys,” J. Alloys Compd. 624, 100–107 (2015).CrossRef C. M. Lin, C. C. Juan, C. H. Chang, C. W. Tsai, and J. W. Yeh, “Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys,” J. Alloys Compd. 624, 100–107 (2015).CrossRef
20.
Zurück zum Zitat C. C. Juan, M. H. Tsai, C. W. Tsai, C. M. Lin, W. R. Wang, C. C. Yang, S. K. Chen, S. J. Lin, J. and W. Yeh, “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys,” Intermetallics 62, 76–83 (2015).CrossRef C. C. Juan, M. H. Tsai, C. W. Tsai, C. M. Lin, W. R. Wang, C. C. Yang, S. K. Chen, S. J. Lin, J. and W. Yeh, “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys,” Intermetallics 62, 76–83 (2015).CrossRef
21.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, A. Katz-Demyanetz, V. Popov, and E. Eshed, “Prediction of the phase composition of high-entropy alloys based on Cr–Nb–Ti–V–Zr using the Calphad method,” Phys. Met. Metallogr. 120, 378–386 (2019).CrossRef I. I. Gorbachev, V. V. Popov, A. Katz-Demyanetz, V. Popov, and E. Eshed, “Prediction of the phase composition of high-entropy alloys based on Cr–Nb–Ti–V–Zr using the Calphad method,” Phys. Met. Metallogr. 120, 378–386 (2019).CrossRef
22.
Zurück zum Zitat J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al0.5CrCuNiV 3D transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020).CrossRef J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al0.5CrCuNiV 3D transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020).CrossRef
23.
Zurück zum Zitat S. Guo and C. T. Liu, “Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci.: Mater. Int. 21, 433–446 (2011).CrossRef S. Guo and C. T. Liu, “Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci.: Mater. Int. 21, 433–446 (2011).CrossRef
24.
Zurück zum Zitat X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys. 132, 233–238 (2012).CrossRef X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys. 132, 233–238 (2012).CrossRef
25.
Zurück zum Zitat M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” J. Mater. Eng. Perform. 26, 3657–3665 (2017).CrossRef M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” J. Mater. Eng. Perform. 26, 3657–3665 (2017).CrossRef
26.
Zurück zum Zitat A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater. 48, 279–306 (2000).CrossRef A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater. 48, 279–306 (2000).CrossRef
27.
Zurück zum Zitat O. N. Senkov, C. Zhang, A. L. Pilchak, E. J. Payton, C. Woodward, and F. Zhang, “CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr,” J. Alloys Compd. 783, 729–742 (2019).CrossRef O. N. Senkov, C. Zhang, A. L. Pilchak, E. J. Payton, C. Woodward, and F. Zhang, “CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr,” J. Alloys Compd. 783, 729–742 (2019).CrossRef
28.
Zurück zum Zitat J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNix (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012).CrossRef J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNix (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012).CrossRef
29.
Zurück zum Zitat T. Takasugi, M. Yoshida, and S. Hanada, “Deformability improvement in C15NbCr2 intermetallics by addition of ternary elements,” Acta Mater. 44, 669–674 (1996).CrossRef T. Takasugi, M. Yoshida, and S. Hanada, “Deformability improvement in C15NbCr2 intermetallics by addition of ternary elements,” Acta Mater. 44, 669–674 (1996).CrossRef
Metadaten
Titel
A Novel Refractory High Entropy Alloy CrHfNbZrTa0.5: Phase Analysis, Microstructure, and Compressive Properties
verfasst von
J. J. Yi
L. Wang
L. Yang
M. Q. Xu
Publikationsdatum
18.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 14/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140179

Weitere Artikel der Ausgabe 14/2021

Physics of Metals and Metallography 14/2021 Zur Ausgabe