Skip to main content
Erschienen in: Wireless Personal Communications 3/2017

29.05.2017

A Novel Sparse Classifier for Automatic Modulation Classification using Cyclostationary Features

verfasst von: Udit Satija, Barathram Ramkumar, M. Sabarimalai Manikandan

Erschienen in: Wireless Personal Communications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Automatic modulation classification plays a key role in cognitive radio for recognizing the modulation scheme. In this paper, we propose a new classifier based on sparse signal decomposition using an overcomplete composite dictionary (constructed using cyclostationary coefficients) for the classification of modulation format of primary user or to identify noise. The basic principle of the classifier is to classify the received signal modulation format based on reconstructed sparse coefficients after solving \(l_1\) norm minimization using the overcomplete dictionary. Then, relative energies of reconstructed sparse coefficients are compared for recognition of modulation format of the received signal. It is a promising candidate for the cognitive radio due to its robust classification ability. The performance of the proposed classifier is compared with other well known classifiers available in literature. Results show the superiority of the proposed classifier over other classifiers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.CrossRef Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.CrossRef
2.
Zurück zum Zitat Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In Proceedings of 1st international conference on communication signal process. Applicat. IEEE ICCSPA, pp. 1–6. Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In Proceedings of 1st international conference on communication signal process. Applicat. IEEE ICCSPA, pp. 1–6.
3.
Zurück zum Zitat Orlic, V. D., & Dukic, M. L. (2010). Multipath channel estimation algorithm for automatic modulation classification using sixth-order cumulants. Electronics Letters, 46(19), 1348–1349.CrossRef Orlic, V. D., & Dukic, M. L. (2010). Multipath channel estimation algorithm for automatic modulation classification using sixth-order cumulants. Electronics Letters, 46(19), 1348–1349.CrossRef
4.
Zurück zum Zitat Orlic, V., & Dukic, M. L. (2009). Algorithm for automatic modulation classification in multipath channel based on sixth-order cumulants. In Proceedings of 9th international conference on IEEE telecommunication modern satellite, cable, and broadcast. Services (TELSIKS 09). Orlic, V., & Dukic, M. L. (2009). Algorithm for automatic modulation classification in multipath channel based on sixth-order cumulants. In Proceedings of 9th international conference on IEEE telecommunication modern satellite, cable, and broadcast. Services (TELSIKS 09).
5.
Zurück zum Zitat Orlic, V. D., & Dukic, M. L. (2009). Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 13(12), 917–919.CrossRef Orlic, V. D., & Dukic, M. L. (2009). Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 13(12), 917–919.CrossRef
6.
Zurück zum Zitat Wu, H.-C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105.CrossRef Wu, H.-C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105.CrossRef
7.
Zurück zum Zitat Le Martret, C., & Boiteau, D. M. (1997). Modulation classification by means of different orders statistical moments. Proceedings of IEEE MILCOM ’97, 3, 1387–1391. Le Martret, C., & Boiteau, D. M. (1997). Modulation classification by means of different orders statistical moments. Proceedings of IEEE MILCOM ’97, 3, 1387–1391.
8.
Zurück zum Zitat Marchand, P., Le Martret, C. & Lacoume, J.-L. (1997). Classification of linear modulations by combination of different orders cyclic cumulants. In Proceedings of the IEEE signal process. Workshop on higher-order statistics, pp. 47–51. Marchand, P., Le Martret, C. & Lacoume, J.-L. (1997). Classification of linear modulations by combination of different orders cyclic cumulants. In Proceedings of the IEEE signal process. Workshop on higher-order statistics, pp. 47–51.
9.
Zurück zum Zitat Bao, F., Wang, X., Tao, Z., Wang, Q., & Du, S. (2009). Adaptive extraction of modulation for cavitation noise. The Journal of the Acoustical Society of America, 126(6), 3106–3113.CrossRef Bao, F., Wang, X., Tao, Z., Wang, Q., & Du, S. (2009). Adaptive extraction of modulation for cavitation noise. The Journal of the Acoustical Society of America, 126(6), 3106–3113.CrossRef
10.
Zurück zum Zitat Mobasseri, B. G. (1999). Constellation shape as a robust signature for digital modulation recognition. Proceedings of IEEE MILCOM, 1, 442–446. Mobasseri, B. G. (1999). Constellation shape as a robust signature for digital modulation recognition. Proceedings of IEEE MILCOM, 1, 442–446.
11.
Zurück zum Zitat Xu, J. L., Su, W., & Zhou, M. (2011). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41, 455–469.CrossRef Xu, J. L., Su, W., & Zhou, M. (2011). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41, 455–469.CrossRef
12.
Zurück zum Zitat Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood function-based modulation classification in bandwidth-constrained sensor networks. In Proceedings of international conference on net., sensing and control (ICNSC), pp. 530–533. Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood function-based modulation classification in bandwidth-constrained sensor networks. In Proceedings of international conference on net., sensing and control (ICNSC), pp. 530–533.
13.
Zurück zum Zitat Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef
14.
Zurück zum Zitat Liu, J., & Luo, Q. (2012). A novel modulation classification algorithm based on daubechies5 wavelet and fractional Fourier transform in cognitive radio. In Proceedings of IEEE 14th international conference on communication technology (ICCT), pp. 115–120. Liu, J., & Luo, Q. (2012). A novel modulation classification algorithm based on daubechies5 wavelet and fractional Fourier transform in cognitive radio. In Proceedings of IEEE 14th international conference on communication technology (ICCT), pp. 115–120.
15.
Zurück zum Zitat Reichert, J. (1992). Automatic classification of communication signals using higher order statistics. Proceedings of of ICASSP ’92, 5, 221–224. Reichert, J. (1992). Automatic classification of communication signals using higher order statistics. Proceedings of of ICASSP ’92, 5, 221–224.
16.
Zurück zum Zitat Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. IEE Proceedings—Radar Sonar and Navigation, 147(4), 169–176.CrossRef Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. IEE Proceedings—Radar Sonar and Navigation, 147(4), 169–176.CrossRef
17.
Zurück zum Zitat Satija, U., Mohanty, M., & Ramkumar, B. (2015). Automatic modulation classification using S-transform based features. In IEEE conference on signal process, integrated net (SPIN). Satija, U., Mohanty, M., & Ramkumar, B. (2015). Automatic modulation classification using S-transform based features. In IEEE conference on signal process, integrated net (SPIN).
18.
Zurück zum Zitat Lim, C. W., & Wakin, M. B. (2012). Automatic modulation recognition for spectrum sensing using nonuniform compressive samples. In IEEE international conference on communication (ICC). Lim, C. W., & Wakin, M. B. (2012). Automatic modulation recognition for spectrum sensing using nonuniform compressive samples. In IEEE international conference on communication (ICC).
19.
Zurück zum Zitat Chen, Y., Liu, J., & Lv, S. (2011). Modulation classification based on bispectrum and sparse representation in cognitive radio. In IEEE 13th international conference on communication technology (ICCT). Chen, Y., Liu, J., & Lv, S. (2011). Modulation classification based on bispectrum and sparse representation in cognitive radio. In IEEE 13th international conference on communication technology (ICCT).
20.
Zurück zum Zitat Chung, C.-D., & Polydoros, A. (1994). Envelope-based classification schemes for continuous-phase binary frequency-shift-keyed modulations. Proceedings of of IEEE MILCOM ’94, 3, 796–800.CrossRef Chung, C.-D., & Polydoros, A. (1994). Envelope-based classification schemes for continuous-phase binary frequency-shift-keyed modulations. Proceedings of of IEEE MILCOM ’94, 3, 796–800.CrossRef
21.
Zurück zum Zitat Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef
22.
Zurück zum Zitat Azzouz, E. E., & Nandi, A. K. (1996). Procedure for automatic recognition of analogue and digital modulations. IEE Proceedings Communications, 143(5), 259–266.CrossRef Azzouz, E. E., & Nandi, A. K. (1996). Procedure for automatic recognition of analogue and digital modulations. IEE Proceedings Communications, 143(5), 259–266.CrossRef
23.
Zurück zum Zitat Nandi, A. K., & Azzouz, E. E. (1995). Automatic analogue modulation recognition. Signal Processing, 46(2), 211–222.CrossRefMATH Nandi, A. K., & Azzouz, E. E. (1995). Automatic analogue modulation recognition. Signal Processing, 46(2), 211–222.CrossRefMATH
24.
Zurück zum Zitat Azzouz, E. E., & Nandi, A. K. (1995). Automatic identification of digital modulation types. Signal Processing, 47(1), 55–69.CrossRefMATH Azzouz, E. E., & Nandi, A. K. (1995). Automatic identification of digital modulation types. Signal Processing, 47(1), 55–69.CrossRefMATH
25.
Zurück zum Zitat Hsue, S.-Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings. F, Radar and Signal Processing, 137(6), 459–464.CrossRef Hsue, S.-Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings. F, Radar and Signal Processing, 137(6), 459–464.CrossRef
26.
Zurück zum Zitat Haring, L., Chen, Y., & Czylwik, A. (2010). Automatic modulation classification methods for wireless OFDM systems in TDD mode. IEEE Transactions on Communications, 58, 2480–2485.CrossRef Haring, L., Chen, Y., & Czylwik, A. (2010). Automatic modulation classification methods for wireless OFDM systems in TDD mode. IEEE Transactions on Communications, 58, 2480–2485.CrossRef
27.
Zurück zum Zitat Zhou, X., Wu, Y., & Yang, G. (2009). Modulation classification of MPSK signals based on relevance vector machines. In International conference IEEE information engineering and computer science (ICIECS). Zhou, X., Wu, Y., & Yang, G. (2009). Modulation classification of MPSK signals based on relevance vector machines. In International conference IEEE information engineering and computer science (ICIECS).
28.
Zurück zum Zitat Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.
29.
Zurück zum Zitat Soltanmohammadi, E., & Naraghi-Pour, M. (2013). Blind modulation classification over fading channels using expectation-maximization. IEEE Wireless Communications Letters, 17(9), 1692–1695.CrossRef Soltanmohammadi, E., & Naraghi-Pour, M. (2013). Blind modulation classification over fading channels using expectation-maximization. IEEE Wireless Communications Letters, 17(9), 1692–1695.CrossRef
30.
Zurück zum Zitat Urriza, P., Rebeiz, E., & Cabric, D. (2013). Optimal discriminant functions based on sampled distribution distance for modulation classification. IEEE Communications Letters, 17(10), 1885–1888.CrossRef Urriza, P., Rebeiz, E., & Cabric, D. (2013). Optimal discriminant functions based on sampled distribution distance for modulation classification. IEEE Communications Letters, 17(10), 1885–1888.CrossRef
31.
Zurück zum Zitat Urriza, P., Rebeiz, E., Pawelczak, P., & Cabric, D. (2011). Computationally efficient modulation level classification based on probability distribution distance functions. IEEE Communications Letters, 15(5), 476–478.CrossRef Urriza, P., Rebeiz, E., Pawelczak, P., & Cabric, D. (2011). Computationally efficient modulation level classification based on probability distribution distance functions. IEEE Communications Letters, 15(5), 476–478.CrossRef
32.
Zurück zum Zitat Wang, F., & Wang, X. (2010). Fast and robust modulation classification via kolmogorov–smirnov test. IEEE Transactions on Communications, 58(8), 2324–2332.CrossRef Wang, F., & Wang, X. (2010). Fast and robust modulation classification via kolmogorov–smirnov test. IEEE Transactions on Communications, 58(8), 2324–2332.CrossRef
33.
Zurück zum Zitat Valipour, M. H., Homayounpour, M. M., & Mehralian, M. A. (2012). Automatic digital modulation recognition in presence of noise using SVM and PSO. In Proceedings of 6th international telecommunications symposium (IST), pp. 378–382. Valipour, M. H., Homayounpour, M. M., & Mehralian, M. A. (2012). Automatic digital modulation recognition in presence of noise using SVM and PSO. In Proceedings of 6th international telecommunications symposium (IST), pp. 378–382.
34.
Zurück zum Zitat Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. The IEEE Circuits and Systems Magazine, 9(2), 27–45.CrossRef Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. The IEEE Circuits and Systems Magazine, 9(2), 27–45.CrossRef
35.
Zurück zum Zitat Sobolewski, S., Adams, W. L., & Sankar, R. (2012). Automatic modulation recognition techniques based on cyclostationary and multifractal features for distinguishing LFM, PWM and PPM waveforms used in radar systems as example of artificial intelligence implementation in test. IEEE Autotestcon, 335–340. Sobolewski, S., Adams, W. L., & Sankar, R. (2012). Automatic modulation recognition techniques based on cyclostationary and multifractal features for distinguishing LFM, PWM and PPM waveforms used in radar systems as example of artificial intelligence implementation in test. IEEE Autotestcon, 335–340.
36.
Zurück zum Zitat Liu, G., Zhang, Z., & Yang, Y. (2012). Recognition of cyclostationary signals smoothed. In International conference on information technology and computer science, pp. 165–169. Liu, G., Zhang, Z., & Yang, Y. (2012). Recognition of cyclostationary signals smoothed. In International conference on information technology and computer science, pp. 165–169.
37.
Zurück zum Zitat Headley, W. C., Reed, J. D., & Silva, C. R. (2008). Distributed cyclic spectrum feature-based modulation classification. In Wireless communication and networking conference (WCNC), pp. 1200–1204. Headley, W. C., Reed, J. D., & Silva, C. R. (2008). Distributed cyclic spectrum feature-based modulation classification. In Wireless communication and networking conference (WCNC), pp. 1200–1204.
38.
Zurück zum Zitat Ming, L., Shaoquan, Y., & Qing, W. (2006). Algorithm for modulation classification of MPSK signals based on cyclostationary. Signal Process, 22(3), 28. Ming, L., Shaoquan, Y., & Qing, W. (2006). Algorithm for modulation classification of MPSK signals based on cyclostationary. Signal Process, 22(3), 28.
39.
Zurück zum Zitat Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef
40.
Zurück zum Zitat Manikandan, M. Sabarimalai, & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40–44.CrossRef Manikandan, M. Sabarimalai, & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40–44.CrossRef
41.
Zurück zum Zitat Manikandan, M. S., Samantaray, S. R., & Kamwa, I. (2015). Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries. IEEE Transactions on Instrumentation and Measurement, 64(1), 27–38.CrossRef Manikandan, M. S., Samantaray, S. R., & Kamwa, I. (2015). Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries. IEEE Transactions on Instrumentation and Measurement, 64(1), 27–38.CrossRef
42.
Zurück zum Zitat Mohanty, M., Satija, U., Ramkumar, B., & Manikandan, M. S. (2015). Digital modulation classification under non-Gaussian noise using sparse signal decomposition and maximum likelihood. In 21st national conference on communication (NCC), pp. 1–6. Mohanty, M., Satija, U., Ramkumar, B., & Manikandan, M. S. (2015). Digital modulation classification under non-Gaussian noise using sparse signal decomposition and maximum likelihood. In 21st national conference on communication (NCC), pp. 1–6.
43.
Zurück zum Zitat Donoho, D. L., & Elad, M. (2002). Optimally sparse representation from overcomplete dictionaries vial L1-norm minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–3002.CrossRef Donoho, D. L., & Elad, M. (2002). Optimally sparse representation from overcomplete dictionaries vial L1-norm minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–3002.CrossRef
44.
Zurück zum Zitat Beidas, B. F., & Weber, C. L. (1998). Asynchronous classification of MFSK signals using the higher order correlation domain. IEEE Transactions on Communications, 46(4), 480–493.CrossRef Beidas, B. F., & Weber, C. L. (1998). Asynchronous classification of MFSK signals using the higher order correlation domain. IEEE Transactions on Communications, 46(4), 480–493.CrossRef
45.
Zurück zum Zitat Su, W., Xu, J. L., & Zhou, M. (2008). Real-time modulation classification based on maximum likelihood. IEEE Communications Letters, 12, 801–803.CrossRef Su, W., Xu, J. L., & Zhou, M. (2008). Real-time modulation classification based on maximum likelihood. IEEE Communications Letters, 12, 801–803.CrossRef
46.
Zurück zum Zitat Fehske, A., Gaeddert, J., & Reed, J. H. (2005). A new approach to signal classification using spectral correlation and neural networks. In Proceedings of IEEE conference on dynamic spectrum access network, pp. 144–145. Fehske, A., Gaeddert, J., & Reed, J. H. (2005). A new approach to signal classification using spectral correlation and neural networks. In Proceedings of IEEE conference on dynamic spectrum access network, pp. 144–145.
47.
Zurück zum Zitat Satija, U., Manikandan, M. S., & Ramkumar, B. (2014). Performance study of cyclostationary based digital modulation classification schemes. In 9th IEEE international conference on industrial information system (ICIIS2014). Satija, U., Manikandan, M. S., & Ramkumar, B. (2014). Performance study of cyclostationary based digital modulation classification schemes. In 9th IEEE international conference on industrial information system (ICIIS2014).
Metadaten
Titel
A Novel Sparse Classifier for Automatic Modulation Classification using Cyclostationary Features
verfasst von
Udit Satija
Barathram Ramkumar
M. Sabarimalai Manikandan
Publikationsdatum
29.05.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4435-5

Weitere Artikel der Ausgabe 3/2017

Wireless Personal Communications 3/2017 Zur Ausgabe

Neuer Inhalt