Skip to main content
Erschienen in: Meccanica 13/2018

26.07.2018

A numerical study of micropolar flow inside a lid-driven triangular enclosure

verfasst von: N. Ali, Mubbashar Nazeer, T. Javed, F. Abbas

Erschienen in: Meccanica | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A study is carried out to analyze the mixed convection flow and heat transfer inside a lid-driven triangular conduit under the effects of micro-gyration boundary conditions. The micropolar constitutive equation characterizes the fluid inside the cavity. The lower boundary is at a uniform temperature and sliding in its plane with constant velocity u0, while the inclined walls are cold. Dual cases are considered here, namely the intense concentration (d) and the weak concentration of microelements (\(m = 0.5\)). The governing nonlinear equations are simulated employing the Galerkin finite element method, where the pressure term is handled via the Penalty approach. Using the numerical data, graphical results are produced to illustrate the effects of physical parameters. Specifically, this refers to the effects of the Grashof number (Gr), Prandtl number (Pr), Reynolds number (Re) and vortex viscosity parameter (K) on the streamlines, mid-section velocity profiles, temperature contours, and local and average Nusselt numbers on the cold and heated boundaries of the conduit. Particular emphasis is given on the identification of the set of parameters for which simultaneous symmetry in streamlines and isotherms prevails. The grid independence test is also performed by comparing the average Nusselt numbers (on the hot and cold boundaries of the conduit) for various mesh sizes, and the optimal solution is found. Moreover, the results are also benchmarked with the previously published data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Eringen AC (2001) Microcontinuum field theories, vol I, II. Springer, New YorkMATH Eringen AC (2001) Microcontinuum field theories, vol I, II. Springer, New YorkMATH
4.
Zurück zum Zitat Eringen AC (1972) Theory of thermomicro fluids. J Math Anal Appl 38:480–496CrossRef Eringen AC (1972) Theory of thermomicro fluids. J Math Anal Appl 38:480–496CrossRef
5.
6.
Zurück zum Zitat Florea OA, Roşca IC (2015) Stokes’ second problem for a micropolar fluid with slip. PLoS ONE 10(7):e0131860CrossRef Florea OA, Roşca IC (2015) Stokes’ second problem for a micropolar fluid with slip. PLoS ONE 10(7):e0131860CrossRef
7.
Zurück zum Zitat Florea OA, Roşca IC (2014) A novel approach of the stokes’ second problem for the synovial fluid in knee osteoarthrosis. J. Osteoarthr Cartil S109:S110 Florea OA, Roşca IC (2014) A novel approach of the stokes’ second problem for the synovial fluid in knee osteoarthrosis. J. Osteoarthr Cartil S109:S110
8.
Zurück zum Zitat Hsu TH, Hsu PT, Chen CK (1995) Thermal convection of micropolar fluids in a lid-driven cavity. Int Commun Heat Mass Transf 22:198–200CrossRef Hsu TH, Hsu PT, Chen CK (1995) Thermal convection of micropolar fluids in a lid-driven cavity. Int Commun Heat Mass Transf 22:198–200CrossRef
9.
Zurück zum Zitat Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. Int J Eng Sci 34:407–415CrossRefMATH Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. Int J Eng Sci 34:407–415CrossRefMATH
10.
Zurück zum Zitat Hsu TH, Wang SG (2000) Mixed convection of micropolar fluids in a cavity. Int J Heat Mass Transf 43:1563–1572CrossRefMATH Hsu TH, Wang SG (2000) Mixed convection of micropolar fluids in a cavity. Int J Heat Mass Transf 43:1563–1572CrossRefMATH
11.
Zurück zum Zitat Maiti G (1975) Convective heat transfer in micropolar fluid flow through a horizontal parallel plate channel. ZAMM 58:85–92MATH Maiti G (1975) Convective heat transfer in micropolar fluid flow through a horizontal parallel plate channel. ZAMM 58:85–92MATH
12.
Zurück zum Zitat Gibanov NS, Sheremet MA, Pop I (2016) Free convection in a trapezoidal cavity filled with a micropolar fluid. Int J Heat Mass Transf 99:831–838CrossRef Gibanov NS, Sheremet MA, Pop I (2016) Free convection in a trapezoidal cavity filled with a micropolar fluid. Int J Heat Mass Transf 99:831–838CrossRef
13.
Zurück zum Zitat Balaram M, Sastri VUK (1973) Micropolar free convection flow. Int J Heat Mass Transf 16:437–441CrossRef Balaram M, Sastri VUK (1973) Micropolar free convection flow. Int J Heat Mass Transf 16:437–441CrossRef
14.
Zurück zum Zitat Hsu TH, Hong KY (2006) Natural convection of micropolar fluids in an open cavity. Numer Heat Transf Part A 50:281–300ADSCrossRef Hsu TH, Hong KY (2006) Natural convection of micropolar fluids in an open cavity. Numer Heat Transf Part A 50:281–300ADSCrossRef
15.
Zurück zum Zitat Chamkha AJ, Mansour MA, Ahmed SE (2010) Unsteady mixed convection of a micropolar fluid in a lid-driven cavity: effects of different micro-gyration boundary conditions. Int J Energy Technol 2(6):1–11 Chamkha AJ, Mansour MA, Ahmed SE (2010) Unsteady mixed convection of a micropolar fluid in a lid-driven cavity: effects of different micro-gyration boundary conditions. Int J Energy Technol 2(6):1–11
16.
Zurück zum Zitat Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Bound Elem 33:485–492MathSciNetCrossRefMATH Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Bound Elem 33:485–492MathSciNetCrossRefMATH
17.
Zurück zum Zitat Gibanov NS, Sheremet MA, Pop I (2016) Natural convection of micropolar fluid in a wavy differentially heated cavity. J Mol Liq 221:518–525CrossRef Gibanov NS, Sheremet MA, Pop I (2016) Natural convection of micropolar fluid in a wavy differentially heated cavity. J Mol Liq 221:518–525CrossRef
18.
Zurück zum Zitat Sheremet MA, Pop I, Ishak A (2017) Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. Int J Heat Mass Transf 105:610–622CrossRef Sheremet MA, Pop I, Ishak A (2017) Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. Int J Heat Mass Transf 105:610–622CrossRef
19.
Zurück zum Zitat Alloui Z, Vasseur P (2010) Natural convection in a shallow cavity filled with a micropolar fluid. Int J Heat Mass Transf 53:2750–2759CrossRefMATH Alloui Z, Vasseur P (2010) Natural convection in a shallow cavity filled with a micropolar fluid. Int J Heat Mass Transf 53:2750–2759CrossRefMATH
20.
Zurück zum Zitat Asadi H, Javaherdeh K, Ramezani S (2013) Finite element simulation of micropolar fluid flow in the lid-driven square cavity. Int J Appl Mech 5(4):(1350045)1–(1350045)26 Asadi H, Javaherdeh K, Ramezani S (2013) Finite element simulation of micropolar fluid flow in the lid-driven square cavity. Int J Appl Mech 5(4):(1350045)1–(1350045)26
21.
Zurück zum Zitat Saleem M, Hossain MA, Saha SC (2012) Mixed convection flow of micropolar fluid in an open ended arc-shape cavity. J Fluids Eng 134:(091101)1–(091101)9CrossRef Saleem M, Hossain MA, Saha SC (2012) Mixed convection flow of micropolar fluid in an open ended arc-shape cavity. J Fluids Eng 134:(091101)1–(091101)9CrossRef
22.
Zurück zum Zitat Saleem M, Asghar S, Hossain MA (2011) Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold side walls. Math Comput Modell 54:508–518CrossRefMATH Saleem M, Asghar S, Hossain MA (2011) Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold side walls. Math Comput Modell 54:508–518CrossRefMATH
23.
Zurück zum Zitat Bhargava R, Bég OA, Sharma S, Zueco J (2010) Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow. Commun Nonlinear Sci Numer Simulat 15:1210–1223ADSMathSciNetCrossRefMATH Bhargava R, Bég OA, Sharma S, Zueco J (2010) Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow. Commun Nonlinear Sci Numer Simulat 15:1210–1223ADSMathSciNetCrossRefMATH
24.
Zurück zum Zitat Jena SK, Bhattacharyya SP (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24:69–78MathSciNetCrossRefMATH Jena SK, Bhattacharyya SP (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24:69–78MathSciNetCrossRefMATH
25.
Zurück zum Zitat Tetbirt A, Bouaziz MN, Abbes MT (2016) Numerical study of magnetic effect on the velocity distribution field in a macro/micro-scale of a micropolar and viscous fluid in vertical channel. J Mol Liq 216:103–110CrossRef Tetbirt A, Bouaziz MN, Abbes MT (2016) Numerical study of magnetic effect on the velocity distribution field in a macro/micro-scale of a micropolar and viscous fluid in vertical channel. J Mol Liq 216:103–110CrossRef
26.
Zurück zum Zitat Fakour M, Vahabzadeh A, Ganji DD, Hatami M (2015) Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq 204:198–204CrossRef Fakour M, Vahabzadeh A, Ganji DD, Hatami M (2015) Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq 204:198–204CrossRef
27.
Zurück zum Zitat Chamkha AJ, Grosan T, Pop I (2003) Fully developed mixed convection of a micropolar fluid in a vertical channel. Int J Fluid Mech Res 30(3):251–263CrossRef Chamkha AJ, Grosan T, Pop I (2003) Fully developed mixed convection of a micropolar fluid in a vertical channel. Int J Fluid Mech Res 30(3):251–263CrossRef
28.
Zurück zum Zitat Chamkha AJ, Grosan T, Pop I (2002) Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf 29(8):1119–1127CrossRef Chamkha AJ, Grosan T, Pop I (2002) Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf 29(8):1119–1127CrossRef
29.
Zurück zum Zitat Miroshnichenko IV, Sheremet MA, Pop I (2017) Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source. Int J Mech Sci 120:182–189CrossRef Miroshnichenko IV, Sheremet MA, Pop I (2017) Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source. Int J Mech Sci 120:182–189CrossRef
30.
Zurück zum Zitat Sheremet M, Grosan T, Pop I (2017) Natural convection in a triangular cavity filled with a micropolar fluid. Int J Numer Methods Heat Fluid Flow 27:504–515CrossRef Sheremet M, Grosan T, Pop I (2017) Natural convection in a triangular cavity filled with a micropolar fluid. Int J Numer Methods Heat Fluid Flow 27:504–515CrossRef
31.
Zurück zum Zitat Ching YC, Oztop HF, Rahman MM, Islam MR, Ahsan A (2012) Finite element simulation of mixed convection heat and mass transfer in a right triangular enclosure. Int Commun Heat Mass Transf 39:689–696CrossRef Ching YC, Oztop HF, Rahman MM, Islam MR, Ahsan A (2012) Finite element simulation of mixed convection heat and mass transfer in a right triangular enclosure. Int Commun Heat Mass Transf 39:689–696CrossRef
32.
Zurück zum Zitat Oztop HF, Varol Y, Koca A, Firat M (2012) Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures. Int Commun Heat Mass Transf 39:1237–1244CrossRef Oztop HF, Varol Y, Koca A, Firat M (2012) Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures. Int Commun Heat Mass Transf 39:1237–1244CrossRef
33.
Zurück zum Zitat Hasanuzzaman M, Rahman MM, Oztop HF, Rahim NA, Saidur R (2012) Effects of Lewis number on heat and mass transfer in a triangular cavity. Int Commun Heat Mass Transf 39:1213–1219CrossRef Hasanuzzaman M, Rahman MM, Oztop HF, Rahim NA, Saidur R (2012) Effects of Lewis number on heat and mass transfer in a triangular cavity. Int Commun Heat Mass Transf 39:1213–1219CrossRef
34.
Zurück zum Zitat Erturk E, Gokcol O (2007) Fine grid numerical solutions of triangular cavity flow. Eur Phys J Appl Phys 38:97–105ADSCrossRef Erturk E, Gokcol O (2007) Fine grid numerical solutions of triangular cavity flow. Eur Phys J Appl Phys 38:97–105ADSCrossRef
35.
Zurück zum Zitat Jyotsna R, Vanka SP (1995) Multigrid calculation of steady, viscous flow in a triangular cavity. J Comput Phys 122:107–117ADSCrossRefMATH Jyotsna R, Vanka SP (1995) Multigrid calculation of steady, viscous flow in a triangular cavity. J Comput Phys 122:107–117ADSCrossRefMATH
36.
Zurück zum Zitat Ribbens CJ, Watson LT (1994) Steady viscous flow in a triangular cavity. J Comput Phys 112:173–181ADSCrossRefMATH Ribbens CJ, Watson LT (1994) Steady viscous flow in a triangular cavity. J Comput Phys 112:173–181ADSCrossRefMATH
37.
Zurück zum Zitat Rahman MM, Oztop HF, Ahsan A, Orfi J (2012) Natural convection effects on heat and mass transfer in a curvilinear triangular cavity. Int J Heat Mass Transf 55:6250–6259CrossRef Rahman MM, Oztop HF, Ahsan A, Orfi J (2012) Natural convection effects on heat and mass transfer in a curvilinear triangular cavity. Int J Heat Mass Transf 55:6250–6259CrossRef
38.
Zurück zum Zitat Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48:891–912CrossRef Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48:891–912CrossRef
39.
Zurück zum Zitat Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23–32CrossRef Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23–32CrossRef
40.
Zurück zum Zitat Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge, pp 1–1012CrossRef Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge, pp 1–1012CrossRef
41.
Zurück zum Zitat Reddy JN (1993) An introduction to the finite element method. McGraw Hill, New York, pp 01–761 Reddy JN (1993) An introduction to the finite element method. McGraw Hill, New York, pp 01–761
42.
Zurück zum Zitat MATLAB 2010 (2010) The Mathworks, Natick MATLAB 2010 (2010) The Mathworks, Natick
43.
Zurück zum Zitat Ali N, Nazeer F, Nazeer M (2018) Flow and heat transfer analysis of Eyring–Powell fluid in a pipe. Zeitschrift für Naturforschung A (ZNA) 73(3):265–274ADSCrossRef Ali N, Nazeer F, Nazeer M (2018) Flow and heat transfer analysis of Eyring–Powell fluid in a pipe. Zeitschrift für Naturforschung A (ZNA) 73(3):265–274ADSCrossRef
45.
Zurück zum Zitat Javed T, Mehmood Z, Siddiqui MA (2017) Effects of uniform magnetic field on the natural convection of Cu-water nanofluid in a triangular cavity with uniformly and non-uniformly heated side wall. Int J Numer. Methods Heat Fluid Flow 27:334–357CrossRef Javed T, Mehmood Z, Siddiqui MA (2017) Effects of uniform magnetic field on the natural convection of Cu-water nanofluid in a triangular cavity with uniformly and non-uniformly heated side wall. Int J Numer. Methods Heat Fluid Flow 27:334–357CrossRef
46.
Zurück zum Zitat Javed T, Siddiqui MA, Mehmood Z, Pop I (2015) MHD natural convective flow in an isosceles triangular cavity filled with porous medium due to uniform/non-uniform heated side walls. Zeitschrift für Naturforschung A 70:919–928CrossRef Javed T, Siddiqui MA, Mehmood Z, Pop I (2015) MHD natural convective flow in an isosceles triangular cavity filled with porous medium due to uniform/non-uniform heated side walls. Zeitschrift für Naturforschung A 70:919–928CrossRef
47.
Zurück zum Zitat Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35:1881–1892CrossRefMATH Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35:1881–1892CrossRefMATH
48.
Zurück zum Zitat Ramakrishna D, Basak T, Roya S, Pop I (2012) A complete heatline analysis on mixed convection within a square cavity: effects of thermal boundary conditions via thermal aspect ratio. Int J Therm Sci 57:98–111CrossRef Ramakrishna D, Basak T, Roya S, Pop I (2012) A complete heatline analysis on mixed convection within a square cavity: effects of thermal boundary conditions via thermal aspect ratio. Int J Therm Sci 57:98–111CrossRef
Metadaten
Titel
A numerical study of micropolar flow inside a lid-driven triangular enclosure
verfasst von
N. Ali
Mubbashar Nazeer
T. Javed
F. Abbas
Publikationsdatum
26.07.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0884-5

Weitere Artikel der Ausgabe 13/2018

Meccanica 13/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.