Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2014

01.03.2014 | Research Paper

A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction

verfasst von: Wen-Jing Yuan, Ju-Chuan Li, Ping Chen, Yu-Hua Shen, An-Jian Xie

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nitrogen-doped graphene aerogels-supported NiS2 nanoparticles (NiS2/NG) were synthesized by a one-pot hydrothermal method. In the process, l-cysteine was used not only as the nitrogen source to form the nitrogen-doped graphene aerogels, but also the sulfur source to form NiS2. The nitrogen-doped graphene (NG) hybrids show an interconnected reticulation of NG sheets with uniform deposition of NiS2 NPs, and the NiS2 NPs are deposited on the NG layers. In studying the effects of the NG and NiS2/NG for the ORR, we found that NiS2/NG shows a more positive onset potential, higher current density, and higher electron transfer number (∼4) for the oxygen-reduction reaction (ORR) in alkaline media than NG. Furthermore, NiS2/NG shows better durability and methanol tolerance than the commercial Pt/C catalyst.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahlberg E, Broo AE (1997) Electrochemical reaction mechanisms at pyrite in acidic perchlorate solutions. J Electrochem Soc 144:1281–1286CrossRef Ahlberg E, Broo AE (1997) Electrochemical reaction mechanisms at pyrite in acidic perchlorate solutions. J Electrochem Soc 144:1281–1286CrossRef
Zurück zum Zitat Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192CrossRef Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192CrossRef
Zurück zum Zitat Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Yao HB, Yu SH (2012) Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 6:712–719CrossRef Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Yao HB, Yu SH (2012) Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 6:712–719CrossRef
Zurück zum Zitat Chen P, Xiao TY, Qian YH, Li SS, Yu SH (2013) A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv Mater 25:3192–3196CrossRef Chen P, Xiao TY, Qian YH, Li SS, Yu SH (2013) A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv Mater 25:3192–3196CrossRef
Zurück zum Zitat Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U, Novoselov K, Krishnamurthy H, Geim A, Ferrari A (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRef Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U, Novoselov K, Krishnamurthy H, Geim A, Ferrari A (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRef
Zurück zum Zitat Davis R, Horvath G, Tobias C (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297CrossRef Davis R, Horvath G, Tobias C (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297CrossRef
Zurück zum Zitat Feng YJ, Gago A, Timperman L, Alonso-Vante N (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56:1009–1022CrossRef Feng YJ, Gago A, Timperman L, Alonso-Vante N (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56:1009–1022CrossRef
Zurück zum Zitat Gao MR, Jiang J, Yu SH (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27CrossRef Gao MR, Jiang J, Yu SH (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27CrossRef
Zurück zum Zitat Gómez Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148CrossRef Gómez Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148CrossRef
Zurück zum Zitat Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
Zurück zum Zitat Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117CrossRef Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117CrossRef
Zurück zum Zitat Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130CrossRef Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130CrossRef
Zurück zum Zitat Jirkovský JS, Björling A, Ahlberg E (2012) Reduction of oxygen on dispersed nanocrystalline CoS2. J Phys Chem C 116:24436–24444CrossRef Jirkovský JS, Björling A, Ahlberg E (2012) Reduction of oxygen on dispersed nanocrystalline CoS2. J Phys Chem C 116:24436–24444CrossRef
Zurück zum Zitat Koo HY, Lee HJ, Noh YY, Lee ES, Kim YH, San Choi W (2012) Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. J Mater Chem 22:7130–7135CrossRef Koo HY, Lee HJ, Noh YY, Lee ES, Kim YH, San Choi W (2012) Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. J Mater Chem 22:7130–7135CrossRef
Zurück zum Zitat Leiro J, Mattila S, Laajalehto K (2003) XPS study of the sulphur 2p spectra of pyrite. Surf Sci 547:157–161CrossRef Leiro J, Mattila S, Laajalehto K (2003) XPS study of the sulphur 2p spectra of pyrite. Surf Sci 547:157–161CrossRef
Zurück zum Zitat Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRef Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRef
Zurück zum Zitat Nesbitt H, Schaufuss A, Scaini M, Bancroft G, Szargan R (2001) XPS measurement of fivefold and sixfold coordinated sulfur in pyrrhotites and evidence for millerite and pyrrhotite surface species. Am Mineral 86:318–326 Nesbitt H, Schaufuss A, Scaini M, Bancroft G, Szargan R (2001) XPS measurement of fivefold and sixfold coordinated sulfur in pyrrhotites and evidence for millerite and pyrrhotite surface species. Am Mineral 86:318–326
Zurück zum Zitat Prieto P, Nistor V, Nouneh K, Oyama M, Abd Lefdil M, Díaz R (2012) XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl Surf Sci 258:8807–8813CrossRef Prieto P, Nistor V, Nouneh K, Oyama M, Abd Lefdil M, Díaz R (2012) XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl Surf Sci 258:8807–8813CrossRef
Zurück zum Zitat Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef
Zurück zum Zitat Snyder J, Fujita T, Chen M, Erlebacher J (2010) Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater 9:904–907CrossRef Snyder J, Fujita T, Chen M, Erlebacher J (2010) Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater 9:904–907CrossRef
Zurück zum Zitat Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315:493–497CrossRef Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315:493–497CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
Zurück zum Zitat Subrahmanyam K, Manna AK, Pat SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75CrossRef Subrahmanyam K, Manna AK, Pat SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75CrossRef
Zurück zum Zitat Tham MJ, Walker RD Jr, Gubbins KE (1970) Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions. J Phys Chem 74:1747–1751CrossRef Tham MJ, Walker RD Jr, Gubbins KE (1970) Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions. J Phys Chem 74:1747–1751CrossRef
Zurück zum Zitat Thorseth MA, Tornow CE, Tse E, Gewirth AA (2013) Cu complexes that catalyze the oxygen reduction reaction. Coordin Chem Rev 257:130–139CrossRef Thorseth MA, Tornow CE, Tse E, Gewirth AA (2013) Cu complexes that catalyze the oxygen reduction reaction. Coordin Chem Rev 257:130–139CrossRef
Zurück zum Zitat Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef
Zurück zum Zitat Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRef Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRef
Zurück zum Zitat Zhu L, Susac D, Teo M, Wong K, Wong P, Parsons R, Bizzotto D, Mitchell K, Campbell S (2008) Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J Catal 258:235–242CrossRef Zhu L, Susac D, Teo M, Wong K, Wong P, Parsons R, Bizzotto D, Mitchell K, Campbell S (2008) Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J Catal 258:235–242CrossRef
Metadaten
Titel
A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction
verfasst von
Wen-Jing Yuan
Ju-Chuan Li
Ping Chen
Yu-Hua Shen
An-Jian Xie
Publikationsdatum
01.03.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2311-8

Weitere Artikel der Ausgabe 3/2014

Journal of Nanoparticle Research 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.