Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2014

01.03.2014 | Research Paper

Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions

verfasst von: Dylan J. Boday, Stephanie Tolbert, Michael W. Keller, Zhe Li, Jason T. Wertz, Beatrice Muriithi, Douglas A. Loy

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silica and polysilsesquioxane particles are used as fillers in composites, catalyst supports, chromatographic separations media, and even as additives to cosmetics. The particles are generally prepared by hydrolysis and condensation of tetraalkoxysilanes and/or organotrialkoxysilanes, respectively, in aqueous alcohol solutions. In this study, we have discovered a new, non-aqueous approach to prepare silica and polysilsesquioxane particles. Spherical, nearly monodisperse, silica particles (600–6,000 nm) were prepared from the reaction of tetramethoxysilane with formic acid (4–8 equivalents) in toluene or toluene/tetrahydrofuran solutions. Polymerization of organotrialkoxysilanes with formic acid failed to afford particles, but bridged polysilsesquioxane particles were obtained from monomers with two trialkoxysilyl group attached to an organic-bridging group. The mild acidic conditions allowed particles to be prepared from monomers, such as bis(3-triethoxysilylpropyl)tetrasulfide, which are unstable to Stöber or base-catalyzed emulsion polymerization conditions. The bridged polysilsesquioxane particles were generally less spherical and more polydisperse than silica particles. Both silica and bridged polysilsesquioxane nanoparticles could be prepared in good yields at monomer concentrations considerably higher than used in Stöber or emulsion approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22(16):4519–4521. doi:10.1021/Cm101191a CrossRef Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22(16):4519–4521. doi:10.​1021/​Cm101191a CrossRef
Zurück zum Zitat Arkhireeva A, Hay JN (2003) Synthesis of sub-200 nm silsesquioxane particles using a modified Stoeber sol–gel route. J Mater Chem 13(12):3122–3127. doi:10.1039/b306994j CrossRef Arkhireeva A, Hay JN (2003) Synthesis of sub-200 nm silsesquioxane particles using a modified Stoeber sol–gel route. J Mater Chem 13(12):3122–3127. doi:10.​1039/​b306994j CrossRef
Zurück zum Zitat Arkhireeva A, Hay JN, Manzano M (2005) Preparation of silsesquioxane particles via a nonhydrolytic sol–gel route. Chem Mater 17(4):875–880. doi:10.1021/cm049634l CrossRef Arkhireeva A, Hay JN, Manzano M (2005) Preparation of silsesquioxane particles via a nonhydrolytic sol–gel route. Chem Mater 17(4):875–880. doi:10.​1021/​cm049634l CrossRef
Zurück zum Zitat Baumann F, Schmidt M, Deubzer B, Geck M, Dauth J (1994) On the preparation of organosilicon μ-spheres: a polycondensation in μ-emulsion? Macromolecules 27(21):6102–6105. doi:10.1021/ma00099a024 CrossRef Baumann F, Schmidt M, Deubzer B, Geck M, Dauth J (1994) On the preparation of organosilicon μ-spheres: a polycondensation in μ-emulsion? Macromolecules 27(21):6102–6105. doi:10.​1021/​ma00099a024 CrossRef
Zurück zum Zitat Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT, Obrey KAD, Loy DA (2009) Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl Mater Interfaces 1(7):1364–1369. doi:10.1021/Am900240h CrossRef Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT, Obrey KAD, Loy DA (2009) Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl Mater Interfaces 1(7):1364–1369. doi:10.​1021/​Am900240h CrossRef
Zurück zum Zitat Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA (2010) Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J Mater Chem 20(33):6863–6865. doi:10.1039/C0jm01448f CrossRef Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA (2010) Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J Mater Chem 20(33):6863–6865. doi:10.​1039/​C0jm01448f CrossRef
Zurück zum Zitat Boday DJ, Stover RJ, Muriithi B, Loy DA (2011) Strong, low density, hexylene- and phenylene-bridged polysilsesquioxane aerogel–polycyanoacrylate composites. J Mater Sci 46(19):6371–6377. doi:10.1007/S10853-011-5584-7 CrossRef Boday DJ, Stover RJ, Muriithi B, Loy DA (2011) Strong, low density, hexylene- and phenylene-bridged polysilsesquioxane aerogel–polycyanoacrylate composites. J Mater Sci 46(19):6371–6377. doi:10.​1007/​S10853-011-5584-7 CrossRef
Zurück zum Zitat Bourget L, Leclercq D, Vioux A (1999) Catalyzed nonhydrolytic sol–gel route to organosilsesquioxane gels. J Sol–Gel Sci Technol 14(2):137–147CrossRef Bourget L, Leclercq D, Vioux A (1999) Catalyzed nonhydrolytic sol–gel route to organosilsesquioxane gels. J Sol–Gel Sci Technol 14(2):137–147CrossRef
Zurück zum Zitat Carroll NJ, Pylypenko S, Atanassov PB, Petsev DN (2009) Microparticles with bimodal nanoporosity derived by microemulsion templating. Langmuir 25(23):13540–13544. doi:10.1021/La900988j CrossRef Carroll NJ, Pylypenko S, Atanassov PB, Petsev DN (2009) Microparticles with bimodal nanoporosity derived by microemulsion templating. Langmuir 25(23):13540–13544. doi:10.​1021/​La900988j CrossRef
Zurück zum Zitat Choi JY, Kim CH, Kim DK (1998) Formation and characterization of monodisperse, spherical organo-silica powders from organo-alkoxysilane–water system. J Am Ceram Soc 81(5):1184–1188CrossRef Choi JY, Kim CH, Kim DK (1998) Formation and characterization of monodisperse, spherical organo-silica powders from organo-alkoxysilane–water system. J Am Ceram Soc 81(5):1184–1188CrossRef
Zurück zum Zitat Ghassemzadeh L, Pace G, Di Noto V, Muller K (2011) Effect of SiO2 on the dynamics of proton conducting [Nafion/(SiO2)(X)] composite membranes: a solid-state F-19 NMR study. PCCP 13(20):9327–9334. doi:10.1039/C0cp02316g CrossRef Ghassemzadeh L, Pace G, Di Noto V, Muller K (2011) Effect of SiO2 on the dynamics of proton conducting [Nafion/(SiO2)(X)] composite membranes: a solid-state F-19 NMR study. PCCP 13(20):9327–9334. doi:10.​1039/​C0cp02316g CrossRef
Zurück zum Zitat Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72CrossRef Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72CrossRef
Zurück zum Zitat Hu L-C, Khiterer M, Huang S-J, Chan JCC, Davey JR, Shea KJ (2010) Uniform, spherical bridged polysilsesquioxane nano- and microparticles by a non-emulsion method. Chem Mater 22 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):5244–5250. doi:10.1021/cm101243m CrossRef Hu L-C, Khiterer M, Huang S-J, Chan JCC, Davey JR, Shea KJ (2010) Uniform, spherical bridged polysilsesquioxane nano- and microparticles by a non-emulsion method. Chem Mater 22 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):5244–5250. doi:10.​1021/​cm101243m CrossRef
Zurück zum Zitat Jesson DA, Abel ML, Hay JN, Smith PA, Watts JF (2006) Organic–inorganic hybrid nanoparticles: surface characteristics and interactions with a polyester resin. Langmuir 22(11):5144–5151. doi:10.1021/La053101p CrossRef Jesson DA, Abel ML, Hay JN, Smith PA, Watts JF (2006) Organic–inorganic hybrid nanoparticles: surface characteristics and interactions with a polyester resin. Langmuir 22(11):5144–5151. doi:10.​1021/​La053101p CrossRef
Zurück zum Zitat Jiang CY, Mark JE (1984) The effects of various catalysts in the in situ precipitation of reinforcing silica in poly(dimethylsiloxane) networks. Makromol Chem 185(12):2609–2617CrossRef Jiang CY, Mark JE (1984) The effects of various catalysts in the in situ precipitation of reinforcing silica in poly(dimethylsiloxane) networks. Makromol Chem 185(12):2609–2617CrossRef
Zurück zum Zitat Khiterer M, Shea KJ (2006) Monodisperse, spherical micro and nanosized bridged polysilsesquioxanes. Polym Prep (Am Chem Soc Div Polym Chem) 47(2):889–890 Khiterer M, Shea KJ (2006) Monodisperse, spherical micro and nanosized bridged polysilsesquioxanes. Polym Prep (Am Chem Soc Div Polym Chem) 47(2):889–890
Zurück zum Zitat Li Z, Tolbert S, Loy DA (2013) Hybrid organic–inorganic membranes on porous supports by size exclusion and thermal sintering of fluorescent polyphenylsilsesquioxane nanoparticles. Macromol Mater Eng 298(7):715–721. doi:10.1002/mame.201200091 CrossRef Li Z, Tolbert S, Loy DA (2013) Hybrid organic–inorganic membranes on porous supports by size exclusion and thermal sintering of fluorescent polyphenylsilsesquioxane nanoparticles. Macromol Mater Eng 298(7):715–721. doi:10.​1002/​mame.​201200091 CrossRef
Zurück zum Zitat Loy DA, Carpenter JP, Myers SA, Assink RA, Small JH, Greaves J, Shea KJ (1996) Intramolecular condensation reactions of alpha, omega-bis(triethoxysilyl)alkanes. Formation of cyclic disilsesquioxanes. J Am Chem Soc 118(35):8501–8502. doi:10.1021/Ja961409k CrossRef Loy DA, Carpenter JP, Myers SA, Assink RA, Small JH, Greaves J, Shea KJ (1996) Intramolecular condensation reactions of alpha, omega-bis(triethoxysilyl)alkanes. Formation of cyclic disilsesquioxanes. J Am Chem Soc 118(35):8501–8502. doi:10.​1021/​Ja961409k CrossRef
Zurück zum Zitat Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ (1997) Direct formation of aerogels by sol–gel polymerizations of alkoxysilanes in supercritical carbon dioxide. Chem Mater 9(11):2264–2268. doi:10.1021/cm970326f CrossRef Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ (1997) Direct formation of aerogels by sol–gel polymerizations of alkoxysilanes in supercritical carbon dioxide. Chem Mater 9(11):2264–2268. doi:10.​1021/​cm970326f CrossRef
Zurück zum Zitat Loy DA, Carpenter JP, Alam TM, Shaltout R, Dorhout PK, Greaves J, Small JH, Shea KJ (1999) Cyclization phenomena in the sol–gel polymerization of alpha, omega-bis(triethoxysilyl) alkanes and incorporation of the cyclic structures into network silsesquioxane polymers. J Am Chem Soc 121(23):5413–5425. doi:10.1021/Ja982751v CrossRef Loy DA, Carpenter JP, Alam TM, Shaltout R, Dorhout PK, Greaves J, Small JH, Shea KJ (1999) Cyclization phenomena in the sol–gel polymerization of alpha, omega-bis(triethoxysilyl) alkanes and incorporation of the cyclic structures into network silsesquioxane polymers. J Am Chem Soc 121(23):5413–5425. doi:10.​1021/​Ja982751v CrossRef
Zurück zum Zitat Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12(12):3624–3632CrossRef Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12(12):3624–3632CrossRef
Zurück zum Zitat Mark JE (2006) Some novel polymeric nanocomposites. Acc Chem Res 39 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):881–888. doi:10.1021/ar040062k CrossRef Mark JE (2006) Some novel polymeric nanocomposites. Acc Chem Res 39 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):881–888. doi:10.​1021/​ar040062k CrossRef
Zurück zum Zitat Matsoukas T, Gulari E (1989) Monomer-addition growth with a slow initiation step: a growth model for silica particles from alkoxides. J Colloid Interface Sci 132 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):13–21. doi:10.1016/0021-9797(89)90210-5 CrossRef Matsoukas T, Gulari E (1989) Monomer-addition growth with a slow initiation step: a growth model for silica particles from alkoxides. J Colloid Interface Sci 132 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):13–21. doi:10.​1016/​0021-9797(89)90210-5 CrossRef
Zurück zum Zitat Matsuda A, Sasaki T, Tanaka T, Tatsumisago M, Minami T (2002) Preparation of copolymerized phenylsilsesquioxane–benzylsilsesquioxane particles. J Sol–Gel Sci Technol 23(3):247–252CrossRef Matsuda A, Sasaki T, Tanaka T, Tatsumisago M, Minami T (2002) Preparation of copolymerized phenylsilsesquioxane–benzylsilsesquioxane particles. J Sol–Gel Sci Technol 23(3):247–252CrossRef
Zurück zum Zitat Mauritz KA, Hassan MK (2007) Nanophase separated perfluorinated ionomers as sol–gel polymerization templates for functional inorganic oxide nanoparticles. Polym Rev 47(4):543–565. doi:10.1080/15583720701638393 CrossRef Mauritz KA, Hassan MK (2007) Nanophase separated perfluorinated ionomers as sol–gel polymerization templates for functional inorganic oxide nanoparticles. Polym Rev 47(4):543–565. doi:10.​1080/​1558372070163839​3 CrossRef
Zurück zum Zitat Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–19. doi:10.1016/J.Apt.09.011 CrossRef Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–19. doi:10.​1016/​J.​Apt.​09.​011 CrossRef
Zurück zum Zitat Nicotera I, Coppola L, Rossi CO, Youssry M, Ranieri GA (2009) NMR investigation of the dynamics of confined water in Nafion-based electrolyte membranes at subfreezing temperatures. J Phys Chem B 113(42):13935–13941. doi:10.1021/Jp904691g CrossRef Nicotera I, Coppola L, Rossi CO, Youssry M, Ranieri GA (2009) NMR investigation of the dynamics of confined water in Nafion-based electrolyte membranes at subfreezing temperatures. J Phys Chem B 113(42):13935–13941. doi:10.​1021/​Jp904691g CrossRef
Zurück zum Zitat Nostell P, Roos A, Karlsson B (1999) Optical and mechanical properties of sol–gel antireflective films for solar energy applications. Thin Solid Films 351(1–2):170–175CrossRef Nostell P, Roos A, Karlsson B (1999) Optical and mechanical properties of sol–gel antireflective films for solar energy applications. Thin Solid Films 351(1–2):170–175CrossRef
Zurück zum Zitat Sharp KG (1994) A two-component, non-aqueous route to silica gel. J Sol–Gel Sci Technol 2 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):35–41. doi:10.1007/bf00486210 CrossRef Sharp KG (1994) A two-component, non-aqueous route to silica gel. J Sol–Gel Sci Technol 2 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):35–41. doi:10.​1007/​bf00486210 CrossRef
Zurück zum Zitat Sharp KG, Michalczyk MJ (1997) Star gels: new hybrid network materials from polyfunctional single component precursors. J Sol–Gel Sci Technol 8(1/2/3):541–546. doi:10.1007/bf02436896 CrossRef Sharp KG, Michalczyk MJ (1997) Star gels: new hybrid network materials from polyfunctional single component precursors. J Sol–Gel Sci Technol 8(1/2/3):541–546. doi:10.​1007/​bf02436896 CrossRef
Zurück zum Zitat Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62–69.CrossRef Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62–69.CrossRef
Zurück zum Zitat Sui R, Rizkalla AS, Charpentier PA (2004) Synthesis and formation of silica aerogel particles by a novel sol–gel route in supercritical carbon dioxide. J Phys Chem B 108(32):11886–11892. doi:10.1021/jp036973d CrossRef Sui R, Rizkalla AS, Charpentier PA (2004) Synthesis and formation of silica aerogel particles by a novel sol–gel route in supercritical carbon dioxide. J Phys Chem B 108(32):11886–11892. doi:10.​1021/​jp036973d CrossRef
Zurück zum Zitat Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, Mccullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW (1994) Development of a formation mechanism for M41s Materials. Zeolites Relat Microporous Mater State Art 84:53–60 Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, Mccullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW (1994) Development of a formation mechanism for M41s Materials. Zeolites Relat Microporous Mater State Art 84:53–60
Zurück zum Zitat Vioux PA (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):2292–2299. doi:10.1021/cm970322a CrossRef Vioux PA (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved):2292–2299. doi:10.​1021/​cm970322a CrossRef
Zurück zum Zitat Wooldridge MS, Danczyk SA, Wu JF (1999) Demonstration of gas-phase combustion synthesis of nanosized particles using a hybrid burner. Nanostruct Mater 11(7):955–964CrossRef Wooldridge MS, Danczyk SA, Wu JF (1999) Demonstration of gas-phase combustion synthesis of nanosized particles using a hybrid burner. Nanostruct Mater 11(7):955–964CrossRef
Zurück zum Zitat Zhang YP, Jin Y, Dai P, Yu H, Yu DH, Ke YX, Liang XM (2009) Phenylene-bridged hybrid silica spheres for high performance liquid chromatography. Anal Methods 1(2):123–127. doi:10.1039/B9ay00073a CrossRef Zhang YP, Jin Y, Dai P, Yu H, Yu DH, Ke YX, Liang XM (2009) Phenylene-bridged hybrid silica spheres for high performance liquid chromatography. Anal Methods 1(2):123–127. doi:10.​1039/​B9ay00073a CrossRef
Metadaten
Titel
Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions
verfasst von
Dylan J. Boday
Stephanie Tolbert
Michael W. Keller
Zhe Li
Jason T. Wertz
Beatrice Muriithi
Douglas A. Loy
Publikationsdatum
01.03.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2313-6

Weitere Artikel der Ausgabe 3/2014

Journal of Nanoparticle Research 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.