Skip to main content
Erschienen in: Computational Mechanics 3/2023

28.11.2022 | Original Paper

A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics

verfasst von: Jinshuai Bai, Timon Rabczuk, Ashish Gupta, Laith Alzubaidi, Yuantong Gu

Erschienen in: Computational Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite its rapid development, Physics-Informed Neural Network (PINN)-based computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical role that significantly influences the performance of the predictions. In this paper, by using the Least Squares Weighted Residual (LSWR) method, we proposed a modified loss function, namely the LSWR loss function, which is tailored to a dimensionless form with only one manually determined parameter. Based on the LSWR loss function, an advanced PINN technique is developed for computational 2D and 3D solid mechanics. The performance of the proposed PINN technique with the LSWR loss function is tested through 2D and 3D (geometrically nonlinear) problems. Thoroughly studies and comparisons are conducted between the two existing loss functions, the energy-based loss function and the collocation loss function, and the proposed LSWR loss function. Through numerical experiments, we show that the PINN based on the LSWR loss function is effective, robust, and accurate for predicting both the displacement and stress fields. The source codes for the numerical examples in this work are available at https://​github.​com/​JinshuaiBai/​LSWR_​loss_​function_​PINN/​.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
16.
Zurück zum Zitat Liu G-R, Quek SS (2013) The finite element method: a practical course. Butterworth-HeinemannMATH Liu G-R, Quek SS (2013) The finite element method: a practical course. Butterworth-HeinemannMATH
18.
Zurück zum Zitat Kendall A, Gal Y and Cipolla R (2018) Multi-task learning using uncertainty to weigh losses for scene geometry and semantics Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7482–7491. Kendall A, Gal Y and Cipolla R (2018) Multi-task learning using uncertainty to weigh losses for scene geometry and semantics Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7482–7491.
20.
Zurück zum Zitat Wang S, Teng Y and Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:04536 Wang S, Teng Y and Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:04536
21.
Zurück zum Zitat Xiang Z, Peng W, Zheng X, Zhao X and Yao W (2021) Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations. arXiv preprint arXiv:210406217 Xiang Z, Peng W, Zheng X, Zhao X and Yao W (2021) Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations. arXiv preprint arXiv:210406217
23.
Zurück zum Zitat Jacot A, Gabriel F, Hongler C (2018) Neural tangent kernel: convergence and generalisation in neural networks. Adv Neural Inf Process Syst 31:87 Jacot A, Gabriel F, Hongler C (2018) Neural tangent kernel: convergence and generalisation in neural networks. Adv Neural Inf Process Syst 31:87
24.
Zurück zum Zitat Lanczos C (2020) The variational principles of mechanics. University of Toronto pressMATH Lanczos C (2020) The variational principles of mechanics. University of Toronto pressMATH
29.
Zurück zum Zitat Liu G-R, Gu Y (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media Liu G-R, Gu Y (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media
32.
Zurück zum Zitat Nielsen MA (2015) Neural networks and deep learning Determination press San Francisco, CA Nielsen MA (2015) Neural networks and deep learning Determination press San Francisco, CA
34.
Zurück zum Zitat Baydin AG, Pearlmutter BA, Radul AA and Siskind JM (2018) Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research 18 Baydin AG, Pearlmutter BA, Radul AA and Siskind JM (2018) Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research 18
37.
Zurück zum Zitat Kay DC (1969) College geometry Holt, Rinehart and Winston Kay DC (1969) College geometry Holt, Rinehart and Winston
41.
Zurück zum Zitat He K, Zhang X, Ren S and Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification Proceedings of the IEEE international conference on computer vision, pp 1026–1034. He K, Zhang X, Ren S and Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification Proceedings of the IEEE international conference on computer vision, pp 1026–1034.
45.
Zurück zum Zitat Brenner S, Scott R (2007) The mathematical theory of finite element methods. Springer Science & Business Media Brenner S, Scott R (2007) The mathematical theory of finite element methods. Springer Science & Business Media
Metadaten
Titel
A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics
verfasst von
Jinshuai Bai
Timon Rabczuk
Ashish Gupta
Laith Alzubaidi
Yuantong Gu
Publikationsdatum
28.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02252-0

Weitere Artikel der Ausgabe 3/2023

Computational Mechanics 3/2023 Zur Ausgabe

Neuer Inhalt