Skip to main content
Erschienen in: Computational Mechanics 3/2023

15.11.2022 | Original Paper

Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue

verfasst von: Guoxiang Grayson Tong, Daniele E. Schiavazzi

Erschienen in: Computational Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a data-driven framework to increase the computational efficiency of the explicit finite element method in the structural analysis of soft tissue. An encoder–decoder long short-term memory deep neural network is trained based on the data produced by an explicit, distributed finite element solver. We leverage this network to predict synchronized displacements at shared nodes, minimizing the amount of communication between processors. We perform extensive numerical experiments to quantify the accuracy and stability of the proposed synchronization-avoiding algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aslam M, Riaz O, Mumtaz S, Asif AD (2020) Performance comparison of GPU-based Jacobi solvers using CUDA provided synchronization methods. IEEE Access 8:31792–31812CrossRef Aslam M, Riaz O, Mumtaz S, Asif AD (2020) Performance comparison of GPU-based Jacobi solvers using CUDA provided synchronization methods. IEEE Access 8:31792–31812CrossRef
2.
Zurück zum Zitat Bakarji J, Champion K, Kutz JN, Brunton SL (2022) Discovering governing equations from partial measurements with deep delay autoencoders. arXiv preprint arXiv:2201.05136 Bakarji J, Champion K, Kutz JN, Brunton SL (2022) Discovering governing equations from partial measurements with deep delay autoencoders. arXiv preprint arXiv:​2201.​05136
3.
Zurück zum Zitat Bartezzaghi A, Cremonesi M, Parolini N, Perego U (2015) An explicit dynamics GPU structural solver for thin shell finite elements. Comput Struct 154:29–40CrossRef Bartezzaghi A, Cremonesi M, Parolini N, Perego U (2015) An explicit dynamics GPU structural solver for thin shell finite elements. Comput Struct 154:29–40CrossRef
4.
Zurück zum Zitat Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, HobokenMATH Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, HobokenMATH
5.
Zurück zum Zitat Bhat U, Munch SB (2022) Recurrent neural networks for partially observed dynamical systems. Phys Rev E 105:044205MathSciNetCrossRef Bhat U, Munch SB (2022) Recurrent neural networks for partially observed dynamical systems. Phys Rev E 105:044205MathSciNetCrossRef
6.
Zurück zum Zitat Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937MathSciNetCrossRefMATH Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chang B, Chen MM, Haber E, Chi EH (2019) AntisymmetricRNN: a dynamical system view on recurrent neural networks Chang B, Chen MM, Haber E, Chi EH (2019) AntisymmetricRNN: a dynamical system view on recurrent neural networks
9.
Zurück zum Zitat Chen Z, Churchill V, Wu KL, Xiu DB (2022) Deep neural network modeling of unknown partial differential equations in nodal space. J Comput Phys 449:110782MathSciNetCrossRefMATH Chen Z, Churchill V, Wu KL, Xiu DB (2022) Deep neural network modeling of unknown partial differential equations in nodal space. J Comput Phys 449:110782MathSciNetCrossRefMATH
10.
11.
Zurück zum Zitat Clough RW, Penzien J (1993) Dynamics of structures. Civil engineering series. McGraw-Hill, New YorkMATH Clough RW, Penzien J (1993) Dynamics of structures. Civil engineering series. McGraw-Hill, New YorkMATH
12.
Zurück zum Zitat Fu XH, Chang LB, Xiu DB (2020) Learning reduced systems via deep neural networks with memory. J Mach Learn Model Comput 1(2):97CrossRef Fu XH, Chang LB, Xiu DB (2020) Learning reduced systems via deep neural networks with memory. J Mach Learn Model Comput 1(2):97CrossRef
13.
Zurück zum Zitat Funahashi K, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw 6(6):801–806CrossRef Funahashi K, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw 6(6):801–806CrossRef
14.
Zurück zum Zitat Garnelo M, Rosenbaum D, Maddison C, Ramalho T, Saxton D, Shanahan M, Teh YW, Rezende D, Eslami SMA (Jul 2018) Conditional neural processes. In: Proceedings of the 35th international conference on machine learning, volume 80 of Proceedings of Machine Learning Research, pp 1704–1713. PMLR, 10–15 Garnelo M, Rosenbaum D, Maddison C, Ramalho T, Saxton D, Shanahan M, Teh YW, Rezende D, Eslami SMA (Jul 2018) Conditional neural processes. In: Proceedings of the 35th international conference on machine learning, volume 80 of Proceedings of Machine Learning Research, pp 1704–1713. PMLR, 10–15
15.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
16.
Zurück zum Zitat He KM, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778 He KM, Zhang XY, Ren SQ, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778
17.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
18.
Zurück zum Zitat Hu YH, Zhao T, Xú SX, Xu ZL, Lin LZ (2022) Neural-PDE: a RNN based neural network for solving time dependent PDEs. Commun Inf Syst Hu YH, Zhao T, Xú SX, Xu ZL, Lin LZ (2022) Neural-PDE: a RNN based neural network for solving time dependent PDEs. Commun Inf Syst
19.
Zurück zum Zitat Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, INC., Mineola Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, INC., Mineola
20.
21.
Zurück zum Zitat Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314CrossRefMATH Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314CrossRefMATH
22.
24.
Zurück zum Zitat Kaheman K, Kutz JN, Brunton SL (2020) SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc R Soc A Math Phys Eng Sci 476(2242):20200279MathSciNetMATH Kaheman K, Kutz JN, Brunton SL (2020) SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc R Soc A Math Phys Eng Sci 476(2242):20200279MathSciNetMATH
25.
Zurück zum Zitat Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of Koopman Eigenfunctions for control. Mach Learn Sci Technol 2(3):035023CrossRef Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of Koopman Eigenfunctions for control. Mach Learn Sci Technol 2(3):035023CrossRef
27.
Zurück zum Zitat Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209CrossRef Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209CrossRef
29.
Zurück zum Zitat Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229(20):7692–7714MathSciNetCrossRefMATH Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229(20):7692–7714MathSciNetCrossRefMATH
30.
Zurück zum Zitat Kovacs A, Exl L, Kornell A, Fischbacher J, Hovorka M, Gusenbauer M, Breth L, Oezelt H, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Schrefl T (2022) Conditional physics informed neural networks. Commun Nonlinear Sci Numer Simul 104:106041MathSciNetCrossRefMATH Kovacs A, Exl L, Kornell A, Fischbacher J, Hovorka M, Gusenbauer M, Breth L, Oezelt H, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Schrefl T (2022) Conditional physics informed neural networks. Commun Nonlinear Sci Numer Simul 104:106041MathSciNetCrossRefMATH
31.
Zurück zum Zitat Kronbichler M, Ljungkvist K (2019) Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans Parallel Comput 6(1):1–32CrossRef Kronbichler M, Ljungkvist K (2019) Multigrid for matrix-free high-order finite element computations on graphics processors. ACM Trans Parallel Comput 6(1):1–32CrossRef
33.
Zurück zum Zitat Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic mode decomposition: data-driven modeling of complex systems. SIAM Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic mode decomposition: data-driven modeling of complex systems. SIAM
35.
Zurück zum Zitat Lu L, Jin PZ, Pang GF, Zhang ZQ, Karniadakis GE (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef Lu L, Jin PZ, Pang GF, Zhang ZQ, Karniadakis GE (2021) Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef
36.
Zurück zum Zitat Malhotra P, Ramakrishnan A, Anand G, Vig L, Agarwal P, Shroff G (2016) LSTM-based encoder-decoder for multi-sensor anomaly detection Malhotra P, Ramakrishnan A, Anand G, Vig L, Agarwal P, Shroff G (2016) LSTM-based encoder-decoder for multi-sensor anomaly detection
37.
Zurück zum Zitat McCaslin SE, Shiakolas PS, Dennis BH, Lawrence KL (2012) Closed-form stiffness matrices for higher order tetrahedral finite elements. Adv Eng Softw 44(1):75–79CrossRef McCaslin SE, Shiakolas PS, Dennis BH, Lawrence KL (2012) Closed-form stiffness matrices for higher order tetrahedral finite elements. Adv Eng Softw 44(1):75–79CrossRef
38.
Zurück zum Zitat Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Meth Eng 63(10):1436–1445CrossRefMATH Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Meth Eng 63(10):1436–1445CrossRefMATH
39.
Zurück zum Zitat Park SH, Kim BD, Kang CM, Chung CC, Choi JW (2018) Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE intelligent vehicles symposium (IV). pp 1672–1678. IEEE Park SH, Kim BD, Kang CM, Chung CC, Choi JW (2018) Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE intelligent vehicles symposium (IV). pp 1672–1678. IEEE
40.
Zurück zum Zitat Partin L, Geraci G, Rushdi A, Eldred MS, Schiavazzi DE (2022) Multifidelity data fusion in convolutional encoder/decoder networks Partin L, Geraci G, Rushdi A, Eldred MS, Schiavazzi DE (2022) Multifidelity data fusion in convolutional encoder/decoder networks
41.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin ZM, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin ZM, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037
42.
Zurück zum Zitat Qin T, Wu KL, Xiu DB (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635MathSciNetCrossRefMATH Qin T, Wu KL, Xiu DB (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635MathSciNetCrossRefMATH
43.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH
44.
Zurück zum Zitat Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW (2020) Learning to simulate complex physics with graph networks. In: Proceedings of the 37th international conference on machine learning. ICML’20. JMLR.org Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW (2020) Learning to simulate complex physics with graph networks. In: Proceedings of the 37th international conference on machine learning. ICML’20. JMLR.org
45.
Zurück zum Zitat Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu MC, Hughes TJR (2015) A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. Int J Numer Meth Eng 102(3–4):576–631CrossRefMATH Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu MC, Hughes TJR (2015) A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. Int J Numer Meth Eng 102(3–4):576–631CrossRefMATH
46.
Zurück zum Zitat Scovazzi G, Carnes B, Zeng X, Rossi S (2016) A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int J Numer Meth Eng 106(10):799–839 Scovazzi G, Carnes B, Zeng X, Rossi S (2016) A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int J Numer Meth Eng 106(10):799–839
47.
Zurück zum Zitat Seo J, Schiavazzi DE, Kahn AM, Marsden AL (2020) The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. Int J Numer Methods Biomed Eng 36(8):e3351 Seo J, Schiavazzi DE, Kahn AM, Marsden AL (2020) The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. Int J Numer Methods Biomed Eng 36(8):e3351
48.
Zurück zum Zitat Seo J, Schiavazzi DE, Marsden AL (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech 64(3):717–739MathSciNetCrossRefMATH Seo J, Schiavazzi DE, Marsden AL (2019) Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels. Comput Mech 64(3):717–739MathSciNetCrossRefMATH
49.
Zurück zum Zitat Shea DE, Brunton SL, Kutz JN (2021) SINDy-BVP: sparse identification of nonlinear dynamics for boundary value problems. Phys Rev Res 3:023255CrossRef Shea DE, Brunton SL, Kutz JN (2021) SINDy-BVP: sparse identification of nonlinear dynamics for boundary value problems. Phys Rev Res 3:023255CrossRef
50.
Zurück zum Zitat Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys D 404:132306MathSciNetCrossRefMATH Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys D 404:132306MathSciNetCrossRefMATH
51.
Zurück zum Zitat Shiakolas PS, Nambiar RV, Lawrence KL, Rogers WA (1992) Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements. Comput Struct 45(2):237–242CrossRefMATH Shiakolas PS, Nambiar RV, Lawrence KL, Rogers WA (1992) Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements. Comput Struct 45(2):237–242CrossRefMATH
52.
Zurück zum Zitat Stoter SKF, Nguyen TH, Hiemstra RR, Schillinger D (2022) Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods Stoter SKF, Nguyen TH, Hiemstra RR, Schillinger D (2022) Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods
53.
Zurück zum Zitat Strbac V, Pierce DM, Vander Sloten J, Famaey N (2017) GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations. Comput Methods Biomech Biomed Engin 20(16):1643–1657CrossRef Strbac V, Pierce DM, Vander Sloten J, Famaey N (2017) GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations. Comput Methods Biomech Biomed Engin 20(16):1643–1657CrossRef
54.
Zurück zum Zitat Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663CrossRef Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27(5):650–663CrossRef
55.
Zurück zum Zitat Vlachas PR, Byeon W, Wan ZY, Sapsis TP, Koumoutsakos P (2018) Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc R Soc A Math Phys Eng Sci 474(2213):20170844MathSciNetMATH Vlachas PR, Byeon W, Wan ZY, Sapsis TP, Koumoutsakos P (2018) Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc R Soc A Math Phys Eng Sci 474(2213):20170844MathSciNetMATH
56.
57.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 3(2):275–290CrossRefMATH Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 3(2):275–290CrossRefMATH
Metadaten
Titel
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
verfasst von
Guoxiang Grayson Tong
Daniele E. Schiavazzi
Publikationsdatum
15.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02248-w

Weitere Artikel der Ausgabe 3/2023

Computational Mechanics 3/2023 Zur Ausgabe

Neuer Inhalt