Skip to main content
Erschienen in: Computational Mechanics 3/2023

21.11.2022 | Original Paper

Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement

verfasst von: Qiming Zhu, Ze Zhao, Jinhui Yan

Erschienen in: Computational Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a predictive computational framework for surrogate modeling of pressure field and optimization of pressure sensor placement for wind engineering applications. Firstly, a machine learning-derived surrogate model, trained by high-fidelity simulation data using finite element-based CFD and informed by a turbulence model, is developed to construct the full-field pressure from scattered sensor measurements in near real-time. Then, the surrogate pressure model is embedded in another neural network (NN) for optimizing pressure sensor placement. The goal of the NN-based optimizer is to learn the best layout of a fixed number of pressure sensors over the structural surface to deliver the most accurate full-field pressure prediction for various inflow wind conditions. We deploy the model to a representative low-rise building subjected to different wind conditions. The performance of the proposed framework is assessed by comparing the predicted results with finite element-based CFD simulation results. The framework shows excellent accuracy and efficiency, which could be potentially integrated with structural health monitoring to enable digital twins of civil structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat He Q, Barajas-Solano D, Tartakovsky G, Tartakovsky A (2020) Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv Water Resour 141:103610CrossRef He Q, Barajas-Solano D, Tartakovsky G, Tartakovsky A (2020) Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv Water Resour 141:103610CrossRef
2.
Zurück zum Zitat He Q, Tartakovsky A (2021) Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resour Res 57(7):e2020WR029479CrossRef He Q, Tartakovsky A (2021) Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resour Res 57(7):e2020WR029479CrossRef
3.
Zurück zum Zitat Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef
4.
Zurück zum Zitat Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu M, Sarkar S (2019) A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Sci Rep 9(1):1–12CrossRef Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu M, Sarkar S (2019) A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Sci Rep 9(1):1–12CrossRef
5.
Zurück zum Zitat Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa M (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116(52):26414–26420CrossRef Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa M (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116(52):26414–26420CrossRef
6.
Zurück zum Zitat Liu Z (2020) Deep material network with cohesive layers: multi-stage training and interfacial failure analysis. Comput Methods Appl Mech Eng 363:112913MathSciNetMATHCrossRef Liu Z (2020) Deep material network with cohesive layers: multi-stage training and interfacial failure analysis. Comput Methods Appl Mech Eng 363:112913MathSciNetMATHCrossRef
7.
Zurück zum Zitat He Q, Tartakovsky A (2021) Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resour Res 57(7):e2020WR029479CrossRef He Q, Tartakovsky A (2021) Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resour Res 57(7):e2020WR029479CrossRef
8.
Zurück zum Zitat Yan W, Lin S, Kafka O, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner G, Liu W (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61:521–541MATHCrossRef Yan W, Lin S, Kafka O, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner G, Liu W (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61:521–541MATHCrossRef
9.
Zurück zum Zitat Paul A, Mozaffar M, Yang Z, Liao W, Choudhary A, Cao J, Agrawal A (2019) A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes. In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, pp 541–550 Paul A, Mozaffar M, Yang Z, Liao W, Choudhary A, Cao J, Agrawal A (2019) A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes. In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). IEEE, pp 541–550
10.
Zurück zum Zitat Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67(2):619–635MathSciNetMATHCrossRef Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67(2):619–635MathSciNetMATHCrossRef
11.
Zurück zum Zitat Xie X, Bennett J, Saha S, Lu Y, Cao J, Liu W, Gan Z (2021) Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing. npj Comput Mater 7(1):1–12CrossRef Xie X, Bennett J, Saha S, Lu Y, Cao J, Liu W, Gan Z (2021) Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing. npj Comput Mater 7(1):1–12CrossRef
12.
Zurück zum Zitat Zhao Z, Stuebner M, Lua J, Phan N, Yan J (2022) Full-field temperature recovery during water quenching processes via physics-informed machine learning. J Mater Process Technol 303:117534CrossRef Zhao Z, Stuebner M, Lua J, Phan N, Yan J (2022) Full-field temperature recovery during water quenching processes via physics-informed machine learning. J Mater Process Technol 303:117534CrossRef
13.
Zurück zum Zitat Kozjek D, Carter FMI, Porter C, Mogonye J, Ehmann K, Cao J (2022) Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements. J Manuf Process 79:81–90CrossRef Kozjek D, Carter FMI, Porter C, Mogonye J, Ehmann K, Cao J (2022) Data-driven prediction of next-layer melt pool temperatures in laser powder bed fusion based on co-axial high-resolution Planck thermometry measurements. J Manuf Process 79:81–90CrossRef
14.
Zurück zum Zitat Mozaffar M, Liao S, Xie X, Saha S, Park C, Cao J, Liu W, Gan Z (2021) Mechanistic artificial intelligence (mechanistic-ai) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J Mater Process Technol 117485 Mozaffar M, Liao S, Xie X, Saha S, Park C, Cao J, Liu W, Gan Z (2021) Mechanistic artificial intelligence (mechanistic-ai) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J Mater Process Technol 117485
15.
Zurück zum Zitat Jiang Z, Ehmann K, Cao J (2022) Prediction of forming temperature in electrically-assisted double-sided incremental forming using a neural network. J Mater Process Technol 302:117486CrossRef Jiang Z, Ehmann K, Cao J (2022) Prediction of forming temperature in electrically-assisted double-sided incremental forming using a neural network. J Mater Process Technol 302:117486CrossRef
16.
Zurück zum Zitat Zhang L, Lu Y, Tang S, Liu W (2022) Hidenn-td: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetMATHCrossRef Zhang L, Lu Y, Tang S, Liu W (2022) Hidenn-td: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetMATHCrossRef
17.
Zurück zum Zitat Kats D, Wang Z, Gan Z, Liu W, Wagner G, Lian Y (2022) A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Comput Mater Sci 202:110958CrossRef Kats D, Wang Z, Gan Z, Liu W, Wagner G, Lian Y (2022) A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Comput Mater Sci 202:110958CrossRef
18.
Zurück zum Zitat Sun L, Gao H, Pan S, Wang J (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732MathSciNetMATHCrossRef Sun L, Gao H, Pan S, Wang J (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732MathSciNetMATHCrossRef
19.
Zurück zum Zitat Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:305–328MathSciNetMATHCrossRef Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:305–328MathSciNetMATHCrossRef
21.
Zurück zum Zitat Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4:71–88MathSciNetMATH Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4:71–88MathSciNetMATH
25.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef
32.
Zurück zum Zitat Calderer R, Zhu L, Gibson R, Masud A (2015) Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math Models Methods Appl Sci 25(12):2287–2317MathSciNetMATHCrossRef Calderer R, Zhu L, Gibson R, Masud A (2015) Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math Models Methods Appl Sci 25(12):2287–2317MathSciNetMATHCrossRef
41.
Zurück zum Zitat Cen H, Zhou Q, Korobenko A (2022) Wall-function-based weak imposition of Dirichlet boundary condition for stratified turbulent flows. Comput Fluids 234:105257MathSciNetMATHCrossRef Cen H, Zhou Q, Korobenko A (2022) Wall-function-based weak imposition of Dirichlet boundary condition for stratified turbulent flows. Comput Fluids 234:105257MathSciNetMATHCrossRef
54.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty - 2018, modeling and simulation in science, engineering and technology. Berlin, Springer, pp 253–336. https://doi.org/10.1007/978-3-319-96469-0_7CrossRef Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty - 2018, modeling and simulation in science, engineering and technology. Berlin, Springer, pp 253–336. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​7CrossRef
59.
Zurück zum Zitat Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68(1):113–130MathSciNetMATHCrossRef Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68(1):113–130MathSciNetMATHCrossRef
60.
Zurück zum Zitat Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68(1):175–184MathSciNetMATHCrossRef Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68(1):175–184MathSciNetMATHCrossRef
61.
Zurück zum Zitat Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef
62.
Zurück zum Zitat Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef
65.
Zurück zum Zitat Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetMATHCrossRef Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetMATHCrossRef
71.
Zurück zum Zitat Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci 117:19007–19016CrossRef Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci 117:19007–19016CrossRef
73.
Zurück zum Zitat Kuraishi T, Terahara T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87CrossRef Kuraishi T, Terahara T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87CrossRef
74.
Zurück zum Zitat Terahara T, Kuraishi T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194CrossRef Terahara T, Kuraishi T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194CrossRef
78.
Zurück zum Zitat Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan society of computational engineering and science conference, Hiroshima, Japan Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan society of computational engineering and science conference, Hiroshima, Japan
79.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kuraishi T (2016) Flow analysis around a tire with actual geometry, road contact and deformation. in preparation Takizawa K, Tezduyar TE, Kuraishi T (2016) Flow analysis around a tire with actual geometry, road contact and deformation. in preparation
80.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 337–376. https://doi.org/10.1007/978-3-319-96469-0_8 Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 337–376. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​8
83.
Zurück zum Zitat Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetMATHCrossRef Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetMATHCrossRef
84.
85.
Zurück zum Zitat Mooneghi M, Irwin P, Chowdhury A (2014) Large-scale testing on wind uplift of roof pavers. J Wind Eng Ind Aerodyn 128:22–36CrossRef Mooneghi M, Irwin P, Chowdhury A (2014) Large-scale testing on wind uplift of roof pavers. J Wind Eng Ind Aerodyn 128:22–36CrossRef
86.
Zurück zum Zitat Pantua CAJ, Calautit JK, Wu Y (2021) Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds. Appl Energy 301:117437CrossRef Pantua CAJ, Calautit JK, Wu Y (2021) Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds. Appl Energy 301:117437CrossRef
87.
Zurück zum Zitat Kind R (1986) Worst suctions near edges of flat rooftops on low-rise buildings. J Wind Eng Ind Aerodyn 25(1):31–47CrossRef Kind R (1986) Worst suctions near edges of flat rooftops on low-rise buildings. J Wind Eng Ind Aerodyn 25(1):31–47CrossRef
88.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetMATHCrossRef Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetMATHCrossRef
89.
Zurück zum Zitat Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi F (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi F (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef
91.
Zurück zum Zitat Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113 Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113
92.
Zurück zum Zitat Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based language model. In: Interspeech, vol 2. Makuhari, pp 1045–1048 Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S (2010) Recurrent neural network based language model. In: Interspeech, vol 2. Makuhari, pp 1045–1048
94.
Zurück zum Zitat Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268 Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268
95.
Zurück zum Zitat Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30, p 3 Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol 30, p 3
96.
Zurück zum Zitat Eger S, Youssef P, Gurevych I. Is it time to swish? comparing deep learning activation functions across nlp tasks. arXiv:1901.02671 Eger S, Youssef P, Gurevych I. Is it time to swish? comparing deep learning activation functions across nlp tasks. arXiv:​1901.​02671
99.
Zurück zum Zitat Griewank A et al (1989) On automatic differentiation. Math Program Recent Dev Appl 6(6):83–107MathSciNetMATH Griewank A et al (1989) On automatic differentiation. Math Program Recent Dev Appl 6(6):83–107MathSciNetMATH
100.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:​1603.​04467
101.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al. Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al. Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32
102.
Zurück zum Zitat Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y. Theano: new features and speed improvements. arXiv:1211.5590 Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y. Theano: new features and speed improvements. arXiv:​1211.​5590
103.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp 675–678 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp 675–678
Metadaten
Titel
Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement
verfasst von
Qiming Zhu
Ze Zhao
Jinhui Yan
Publikationsdatum
21.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02251-1

Weitere Artikel der Ausgabe 3/2023

Computational Mechanics 3/2023 Zur Ausgabe

Neuer Inhalt