Skip to main content
Erschienen in: Computational Mechanics 3/2023

23.12.2022 | Original Paper

A three-dimensional prediction method of stiffness properties of composites based on deep learning

verfasst von: Hao Su, TianYuan Guan, Yan Liu

Erschienen in: Computational Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is significant to determine the macroscopic mechanical properties of composite materials with complex microstructure efficiently and accurately in many fields. We propose a deep learning method based on three-dimensional convolutional neural network (3D CNN) to predict the elastic coefficients of composite materials with inclusions of arbitrary sizes, shapes and material parameters. 3D datasets are generated, and a storage algorithm is proposed to reduce great storage costs in 3D. A general framework for 3D CNN models is constructed, and numerical experiments are carried out using 3D CNNs of various scales. Our results demonstrate that the scale of full connection part is the key factor of prediction ability of 3D CNNs in this task. We also demonstrate that our method can effectively save computational time compared with traditional numerical methods such as the finite element method in large-scale prediction tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep 29(3–4):49–113CrossRef Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep 29(3–4):49–113CrossRef
2.
Zurück zum Zitat Sen O, Davis S, Jacobs G, Udaykumar HS (2015) Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J Comput Phys 294:585–604MathSciNetCrossRefMATH Sen O, Davis S, Jacobs G, Udaykumar HS (2015) Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J Comput Phys 294:585–604MathSciNetCrossRefMATH
3.
Zurück zum Zitat Zhou XY, Gosling PD, Pearce CJ, Ullah Z, Kaczmarczyk L (2016) Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. Int J Solids Struct 80:368–380CrossRef Zhou XY, Gosling PD, Pearce CJ, Ullah Z, Kaczmarczyk L (2016) Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. Int J Solids Struct 80:368–380CrossRef
4.
Zurück zum Zitat Gokhale AM, Singh H, Shan Z (2006) Microstructure representation and simulation tools for microstructure-based computational micro-mechanics of heterogeneous materials. In: Computational methods, dordrecht, pp 1629–1633 Gokhale AM, Singh H, Shan Z (2006) Microstructure representation and simulation tools for microstructure-based computational micro-mechanics of heterogeneous materials. In: Computational methods, dordrecht, pp 1629–1633
5.
Zurück zum Zitat Tagliavia G, Porfiri M, Gupta N (2009) Vinyl ester-glass hollow particle composites: dynamic mechanical properties at high inclusion volume fraction. J Compos Mater 43(5):561–582CrossRef Tagliavia G, Porfiri M, Gupta N (2009) Vinyl ester-glass hollow particle composites: dynamic mechanical properties at high inclusion volume fraction. J Compos Mater 43(5):561–582CrossRef
6.
Zurück zum Zitat Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192CrossRefMATH Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192CrossRefMATH
7.
8.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef
9.
Zurück zum Zitat Xing YF, Du CY (2014) An improved multiscale eigenelement method of periodical composite structures. Compos Struct 118:200–207CrossRef Xing YF, Du CY (2014) An improved multiscale eigenelement method of periodical composite structures. Compos Struct 118:200–207CrossRef
10.
Zurück zum Zitat Omairey SL, Dunning PD, Sriramula S (2019) Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng Comput 35(2):567–577CrossRef Omairey SL, Dunning PD, Sriramula S (2019) Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng Comput 35(2):567–577CrossRef
11.
Zurück zum Zitat Cheng G-D, Cai Y-W, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29(4):550–556MathSciNetCrossRefMATH Cheng G-D, Cai Y-W, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29(4):550–556MathSciNetCrossRefMATH
12.
Zurück zum Zitat Ye S, Li B, Li Q, Zhao H-P, Feng X-Q (2019) Deep neural network method for predicting the mechanical properties of composites. Appl Phys Lett 115(16):161901CrossRef Ye S, Li B, Li Q, Zhao H-P, Feng X-Q (2019) Deep neural network method for predicting the mechanical properties of composites. Appl Phys Lett 115(16):161901CrossRef
13.
Zurück zum Zitat Zhou K, Sun H, Enos R, Zhang D, Tang J (2021) Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties. Comput Mater Sci 197:110663CrossRef Zhou K, Sun H, Enos R, Zhang D, Tang J (2021) Harnessing deep learning for physics-informed prediction of composite strength with microstructural uncertainties. Comput Mater Sci 197:110663CrossRef
14.
Zurück zum Zitat Bargmann S, Klusemann B, Markmann J, Schnabel JE, Schneider K, Soyarslan C, Wilmers J (2018) Generation of 3D representative volume elements for heterogeneous materials: a review. Progress Mater Sci 96:322–384CrossRef Bargmann S, Klusemann B, Markmann J, Schnabel JE, Schneider K, Soyarslan C, Wilmers J (2018) Generation of 3D representative volume elements for heterogeneous materials: a review. Progress Mater Sci 96:322–384CrossRef
15.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
16.
Zurück zum Zitat Wang H, Zhang L, Han J, W E (2018) Deepmd-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 228:178–184CrossRef Wang H, Zhang L, Han J, W E (2018) Deepmd-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 228:178–184CrossRef
17.
Zurück zum Zitat Ryan K, Lengyel J, Shatruk M (2018) Crystal structure prediction via deep learning. J Am Chem Soc 140(32):10158–10168CrossRef Ryan K, Lengyel J, Shatruk M (2018) Crystal structure prediction via deep learning. J Am Chem Soc 140(32):10158–10168CrossRef
18.
Zurück zum Zitat Moore BA, Rougier E, O’Malley D, Srinivasan G, Hunter A, Viswanathan H (2018) Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Comput Mater Sci 148:46–53CrossRef Moore BA, Rougier E, O’Malley D, Srinivasan G, Hunter A, Viswanathan H (2018) Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Comput Mater Sci 148:46–53CrossRef
19.
Zurück zum Zitat Elapolu MSR, Shishir MIR, Tabarraei A (2022) A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms. Comput Mater Sci 201:110878CrossRef Elapolu MSR, Shishir MIR, Tabarraei A (2022) A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms. Comput Mater Sci 201:110878CrossRef
20.
Zurück zum Zitat Liu X, Gasco F, Goodsell J, Yu W (2019) Initial failure strength prediction of woven composites using a new yarn failure criterion constructed by deep learning. Compos Struct 230:111505CrossRef Liu X, Gasco F, Goodsell J, Yu W (2019) Initial failure strength prediction of woven composites using a new yarn failure criterion constructed by deep learning. Compos Struct 230:111505CrossRef
21.
Zurück zum Zitat Zhang X, Garikipati K (2020) Machine learning materials physics: multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures. Comput Methods Appl Mech Eng 372:113362MathSciNetCrossRefMATH Zhang X, Garikipati K (2020) Machine learning materials physics: multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures. Comput Methods Appl Mech Eng 372:113362MathSciNetCrossRefMATH
22.
Zurück zum Zitat LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems (NIPS), vol 2 LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems (NIPS), vol 2
23.
Zurück zum Zitat LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems, pp 253–256 LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems, pp 253–256
24.
Zurück zum Zitat Wang Y, Zhang M, Lin A, Iyer A, Prasad AS, Li X, Zhang Y, Schadler LS, Chen W, Brinson LC (2020) Mining structure-property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks. Mol Syst Des Eng 5(5):962–975CrossRef Wang Y, Zhang M, Lin A, Iyer A, Prasad AS, Li X, Zhang Y, Schadler LS, Chen W, Brinson LC (2020) Mining structure-property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks. Mol Syst Des Eng 5(5):962–975CrossRef
25.
Zurück zum Zitat Wei A, Xiong J, Yang W, Guo F (2021) Deep learning-assisted elastic isotropy identification for architected materials. Extreme Mech Lett 43:101173CrossRef Wei A, Xiong J, Yang W, Guo F (2021) Deep learning-assisted elastic isotropy identification for architected materials. Extreme Mech Lett 43:101173CrossRef
26.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: In Proceedings of the international conference on artificial intelligence and statistics, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: In Proceedings of the international conference on artificial intelligence and statistics, pp 249–256
27.
Zurück zum Zitat Hara K, Kataoka H, Satoh Y (2018) Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 6546–6555 Hara K, Kataoka H, Satoh Y (2018) Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 6546–6555
28.
Zurück zum Zitat Zhang W, Lin J, Xu W, Fu H, Yang G (2017) SCStore: managing scientific computing packages for hybrid system with containers. Tsinghua Sci Technol 22(6):675–681CrossRef Zhang W, Lin J, Xu W, Fu H, Yang G (2017) SCStore: managing scientific computing packages for hybrid system with containers. Tsinghua Sci Technol 22(6):675–681CrossRef
29.
Zurück zum Zitat Dassault Systèmes Simulia Corp: SIMULIA user assistance 2020 (2020) Dassault Systèmes Simulia Corp: SIMULIA user assistance 2020 (2020)
30.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. Proceedings of machine learning research, vol 37, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning. Proceedings of machine learning research, vol 37, pp 448–456
31.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on international conference on machine learning, pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on international conference on machine learning, pp 807–814
32.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958MathSciNetMATH
33.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of OSDI’16: 12th USENIX symposium on operating systems design and implementation, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of OSDI’16: 12th USENIX symposium on operating systems design and implementation, pp 265–283
34.
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations
35.
Zurück zum Zitat Wager S, Wang S, Liang P (2013) Dropout training as adaptive regularization. Adv Neural Inform Process Syst 26:351–359 Wager S, Wang S, Liang P (2013) Dropout training as adaptive regularization. Adv Neural Inform Process Syst 26:351–359
36.
Zurück zum Zitat Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman A (2017) The kinetics human action video dataset Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman A (2017) The kinetics human action video dataset
Metadaten
Titel
A three-dimensional prediction method of stiffness properties of composites based on deep learning
verfasst von
Hao Su
TianYuan Guan
Yan Liu
Publikationsdatum
23.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02253-z

Weitere Artikel der Ausgabe 3/2023

Computational Mechanics 3/2023 Zur Ausgabe