Skip to main content
Erschienen in: Computational Mechanics 3/2023

24.12.2022 | Original Paper

Discrepancies between Gaussian surface heat source model and ray tracing heat source model for numerical simulation of selective laser melting

verfasst von: Xu Zhou, Ze-Kun Wang, Peng Hu, Mou-Bin Liu

Erschienen in: Computational Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser melting (SLM) is one of the most promising technologies in metal powder additive manufacturing. Over the past few decades, high-fidelity thermo-fluid simulations have been extensively used to understand the physical mechanisms of the SLM process. However, there are few existing simulation frameworks that can accurately reproduce the complex interactions between laser beams and powder particles, which significantly contribute to the energy flux during the whole manufacturing process. In this work, a high-fidelity, multiphase multi-physics simulation framework with the ray tracing heat source model is developed to better simulate the laser-matter interactions and melt pool dynamics during SLM. In this simulation framework, the gas-metal interface is captured by a sharp surface capturing technique (isoAdvector) and modeled by a geometrical surface reconstruction step. With the incorporation of a ray tracing heat source, the discretized laser rays can impinge on the reconstructed gas-metal interfaces and undergo multiple reflections. Moreover, simulations with ray tracing heat source and Gaussian surface heat source dealing with different structures were performed and compared. We show that the structures with more sheltered surfaces (by adjacent structures) or larger self-shielding degrees will lead to larger discrepancies between the simulation results with these two heat source models. Such observations can guide the choice of heat source models when modeling structures with different complexities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F, du Plessis A (2021) Metal additive manufacturing in aerospace: a review. Mater Design 209:110008CrossRef Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F, du Plessis A (2021) Metal additive manufacturing in aerospace: a review. Mater Design 209:110008CrossRef
2.
Zurück zum Zitat Patel P, Gohil P (2021) Role of additive manufacturing in medical application COVID-19 scenario: India case study. J Manuf Syst 60:811–822CrossRef Patel P, Gohil P (2021) Role of additive manufacturing in medical application COVID-19 scenario: India case study. J Manuf Syst 60:811–822CrossRef
3.
Zurück zum Zitat Li J, Durandet Y, Huang X, Sun G, Ruan D (2022) Additively manufactured fiber-reinforced composites: a review of mechanical behavior and opportunities. J Mater Sci Technol 119:219–244CrossRef Li J, Durandet Y, Huang X, Sun G, Ruan D (2022) Additively manufactured fiber-reinforced composites: a review of mechanical behavior and opportunities. J Mater Sci Technol 119:219–244CrossRef
5.
Zurück zum Zitat Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef
6.
Zurück zum Zitat Dai D, Gu D (2015) Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder. Int J Mach Tool Manu 88:95–107CrossRef Dai D, Gu D (2015) Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder. Int J Mach Tool Manu 88:95–107CrossRef
7.
Zurück zum Zitat Yan W, Lian Y, Yu C, Kafka OL, Liu Z, Liu WK, Wagner GJ (2018) An integrated process–structure–property modeling framework for additive manufacturing. Comput Method Appl M 339:184–204MathSciNetCrossRefMATH Yan W, Lian Y, Yu C, Kafka OL, Liu Z, Liu WK, Wagner GJ (2018) An integrated process–structure–property modeling framework for additive manufacturing. Comput Method Appl M 339:184–204MathSciNetCrossRefMATH
8.
Zurück zum Zitat Yu T, Zhao J (2021) Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput Method Appl M 377:113707MathSciNetCrossRefMATH Yu T, Zhao J (2021) Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput Method Appl M 377:113707MathSciNetCrossRefMATH
9.
Zurück zum Zitat Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867CrossRef
10.
Zurück zum Zitat Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328CrossRef Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328CrossRef
11.
Zurück zum Zitat Zhang Z, Huang Y, Kasinathan AR, Shahabad SI, Ali U, Mahmoodkhani Y, Toyserkani E (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312CrossRef Zhang Z, Huang Y, Kasinathan AR, Shahabad SI, Ali U, Mahmoodkhani Y, Toyserkani E (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312CrossRef
12.
Zurück zum Zitat Ge W, Han S, Na SJ, Fuh JYH (2021) Numerical modelling of surface morphology in selective laser melting. Comp Mater Sci 186:110062CrossRef Ge W, Han S, Na SJ, Fuh JYH (2021) Numerical modelling of surface morphology in selective laser melting. Comp Mater Sci 186:110062CrossRef
13.
Zurück zum Zitat Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Comput Method Appl M 383:113910MathSciNetCrossRefMATH Zhu Q, Yan J (2021) A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes. Comput Method Appl M 383:113910MathSciNetCrossRefMATH
14.
Zurück zum Zitat Wessels H, Bode T, Weißenfels C, Wriggers P, Zohdi TI (2019) Investigation of heat source modeling for selective laser melting. Comput Mech 63(5):949–970MathSciNetCrossRefMATH Wessels H, Bode T, Weißenfels C, Wriggers P, Zohdi TI (2019) Investigation of heat source modeling for selective laser melting. Comput Mech 63(5):949–970MathSciNetCrossRefMATH
15.
Zurück zum Zitat Ren Z, Zhang DZ, Fu G, Jiang J, Zhao M (2021) High-fidelity modelling of selective laser melting copper alloy: laser reflection behavior and thermal-fluid dynamics. Mater Des 207:109857CrossRef Ren Z, Zhang DZ, Fu G, Jiang J, Zhao M (2021) High-fidelity modelling of selective laser melting copper alloy: laser reflection behavior and thermal-fluid dynamics. Mater Des 207:109857CrossRef
16.
Zurück zum Zitat Liu B, Fang G, Lei L, Liu W (2020) A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM). Appl Math Model 79:506–520MathSciNetCrossRefMATH Liu B, Fang G, Lei L, Liu W (2020) A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM). Appl Math Model 79:506–520MathSciNetCrossRefMATH
17.
Zurück zum Zitat Roenby J, Bredmose H, Jasak H (2016) A computational method for sharp interface advection. R Soc Open Sci 3(11):160405MathSciNetCrossRef Roenby J, Bredmose H, Jasak H (2016) A computational method for sharp interface advection. R Soc Open Sci 3(11):160405MathSciNetCrossRef
18.
Zurück zum Zitat Rösler F, Brüggemann D (2011) Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat Mass Transf 47(8):1027CrossRef Rösler F, Brüggemann D (2011) Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat Mass Transf 47(8):1027CrossRef
19.
Zurück zum Zitat Wang Z, Yan W, Liu WK, Liu M (2019) Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech 63(4):649–661CrossRefMATH Wang Z, Yan W, Liu WK, Liu M (2019) Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech 63(4):649–661CrossRefMATH
20.
Zurück zum Zitat Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comp Mater Sci 126:479–490CrossRef Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comp Mater Sci 126:479–490CrossRef
21.
Zurück zum Zitat Tang C, Yao L, Du H (2022) Computational framework for the simulation of multi material laser powder bed fusion. Int J Heat Mass Tran 191:122855CrossRef Tang C, Yao L, Du H (2022) Computational framework for the simulation of multi material laser powder bed fusion. Int J Heat Mass Tran 191:122855CrossRef
23.
Zurück zum Zitat Zhao S, Zhang J, Ni M-J (2022) Boiling and evaporation model for liquid-gas flows: a sharp and conservative method based on the geometrical VOF approach. J Comput Phys 452:110908MathSciNetCrossRefMATH Zhao S, Zhang J, Ni M-J (2022) Boiling and evaporation model for liquid-gas flows: a sharp and conservative method based on the geometrical VOF approach. J Comput Phys 452:110908MathSciNetCrossRefMATH
24.
Zurück zum Zitat Renzhiglov NF, Pavlishcheva TV (1970) On the viscosity of rocks. Sov Min Sci 6(5):582–585CrossRef Renzhiglov NF, Pavlishcheva TV (1970) On the viscosity of rocks. Sov Min Sci 6(5):582–585CrossRef
25.
Zurück zum Zitat Jasak H, Jemcov A, Tukovic Z (2007) OpenFOAM: A C++ library for complex physics simulations. International workshop on coupled methods in numerical dynamics. IUC Dubrovnik Croatia, pp 1–20 Jasak H, Jemcov A, Tukovic Z (2007) OpenFOAM: A C++ library for complex physics simulations. International workshop on coupled methods in numerical dynamics. IUC Dubrovnik Croatia, pp 1–20
27.
Zurück zum Zitat Liu T, Hu R, Chen X, Gong S, Pang S (2018) Localized boiling-induced spatters in the high-power laser welding of stainless steel: three-dimensional visualization and physical understanding. Appl Phys A 124(9):654CrossRef Liu T, Hu R, Chen X, Gong S, Pang S (2018) Localized boiling-induced spatters in the high-power laser welding of stainless steel: three-dimensional visualization and physical understanding. Appl Phys A 124(9):654CrossRef
28.
Zurück zum Zitat Boley C, Mitchell S, Rubenchik A, Wu S (2016) Metal powder absorptivity: modeling and experiment. Appl Optics 55(23):6496–6500CrossRef Boley C, Mitchell S, Rubenchik A, Wu S (2016) Metal powder absorptivity: modeling and experiment. Appl Optics 55(23):6496–6500CrossRef
29.
Zurück zum Zitat Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6(3):155–161CrossRef Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6(3):155–161CrossRef
30.
Zurück zum Zitat Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation. Interference and diffraction of light. Elsevier Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation. Interference and diffraction of light. Elsevier
31.
Zurück zum Zitat Goniva C, Kloss C, Deen NG, Kuipers JA, Pirker S (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10(5):582–591CrossRef Goniva C, Kloss C, Deen NG, Kuipers JA, Pirker S (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10(5):582–591CrossRef
32.
Zurück zum Zitat He X, Fuerschbach P, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys 36(12):1388CrossRef He X, Fuerschbach P, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys 36(12):1388CrossRef
33.
Zurück zum Zitat Boley C, Khairallah SA, Rubenchik AM (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Optics 54(9):2477–2482CrossRef Boley C, Khairallah SA, Rubenchik AM (2015) Calculation of laser absorption by metal powders in additive manufacturing. Appl Optics 54(9):2477–2482CrossRef
34.
Zurück zum Zitat Palik ED (1998) Handbook of optical constants of solids. Academic press Palik ED (1998) Handbook of optical constants of solids. Academic press
35.
Zurück zum Zitat Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349CrossRef
36.
Zurück zum Zitat Matthews M, Trapp J, Guss G, Rubenchik A (2018) Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes. J Laser Appl 30(3):032302CrossRef Matthews M, Trapp J, Guss G, Rubenchik A (2018) Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes. J Laser Appl 30(3):032302CrossRef
37.
Zurück zum Zitat Sun P, Fang ZZ, Zhang Y, Xia Y (2017) Review of the methods for production of spherical Ti and Ti alloy powder. Jom 69(10):1853–1860CrossRef Sun P, Fang ZZ, Zhang Y, Xia Y (2017) Review of the methods for production of spherical Ti and Ti alloy powder. Jom 69(10):1853–1860CrossRef
Metadaten
Titel
Discrepancies between Gaussian surface heat source model and ray tracing heat source model for numerical simulation of selective laser melting
verfasst von
Xu Zhou
Ze-Kun Wang
Peng Hu
Mou-Bin Liu
Publikationsdatum
24.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-022-02235-1

Weitere Artikel der Ausgabe 3/2023

Computational Mechanics 3/2023 Zur Ausgabe

Neuer Inhalt