Skip to main content
Erschienen in: Computational Mechanics 1/2021

10.05.2021 | Original Paper

Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework

verfasst von: Takashi Kuraishi, Fulin Zhang, Kenji Takizawa, Tayfun E. Tezduyar

Erschienen in: Computational Mechanics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this first part of a two-part article, we present a framework for wind turbine wake computation. The framework is made of the Space–Time Variational Multiscale (ST-VMS) method, ST isogeometric discretization, and the Multidomain Method (MDM). The ST context provides higher-order accuracy in general, and the VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the flow. The ST isogeometric discretization enables increased accuracy in the flow solution. With the MDM, a long wake can be computed over a sequence of subdomains, instead of a single, long domain, thus somewhat reducing the computational cost. Furthermore, with the MDM, the computation over a downstream subdomain can start several turbine rotations after the computation over the upstream subdomain starts, thus reducing the computational cost even more. All these good features of the framework, in combination, enable accurate representation of the turbine long-wake vortex patterns in a computationally efficient way. In the computations we present, the velocity data on the inflow plane comes from a previous wind turbine computation, extracted by projection from a plane located 10 m downstream of the turbine, which has a diameter of 126 m. The results show the effectiveness of the framework in wind turbine long-wake computation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef
7.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (February 2013) Computational fluid-structure interaction: methods and applications. Wiley, ISBN 978-0470978771 Bazilevs Y, Takizawa K, Tezduyar TE (February 2013) Computational fluid-structure interaction: methods and applications. Wiley, ISBN 978-0470978771
9.
Zurück zum Zitat Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34. ASME, New York, pp 19–35 Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34. ASME, New York, pp 19–35
10.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATHCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATHCrossRef
12.
Zurück zum Zitat Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83-0125, Reno, Nevada, https://doi.org/10.2514/6.1983-125 Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83-0125, Reno, Nevada, https://​doi.​org/​10.​2514/​6.​1983-125
14.
Zurück zum Zitat Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99MATHCrossRef Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99MATHCrossRef
15.
Zurück zum Zitat Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401MathSciNetMATHCrossRef Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401MathSciNetMATHCrossRef
16.
Zurück zum Zitat Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799MATHCrossRef Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799MATHCrossRef
17.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetMATHCrossRef
18.
Zurück zum Zitat Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414MathSciNetMATHCrossRef Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414MathSciNetMATHCrossRef
20.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetMATHCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetMATHCrossRef
22.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef
23.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef
24.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef
25.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef
26.
Zurück zum Zitat Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef
28.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (eds),Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 253–336, ISBN 978-3-319-96468-3, https://doi.org/10.1007/978-3-319-96469-0_7 Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (eds),Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 253–336, ISBN 978-3-319-96468-3, https://​doi.​org/​10.​1007/​978-3-319-96469-0_​7
30.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH (2020) ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds.), Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 195–233, ISBN 978-3-030-43735-0. https://doi.org/10.1007/978-3-030-43736-7_7 Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH (2020) ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds.), Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 195–233, ISBN 978-3-030-43735-0. https://​doi.​org/​10.​1007/​978-3-030-43736-7_​7
38.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 235–280, ISBN 978-3-030-43735-0. https://doi.org/10.1007/978-3-030-43736-7_8 Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 235–280, ISBN 978-3-030-43735-0. https://​doi.​org/​10.​1007/​978-3-030-43736-7_​8
39.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRef Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRef
40.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef
41.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef
42.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef
43.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef
44.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef
45.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef
50.
Zurück zum Zitat Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://doi.org/10.1007/s00466-015-1166-xCrossRefMATH Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://​doi.​org/​10.​1007/​s00466-015-1166-xCrossRefMATH
51.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef
53.
Zurück zum Zitat Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2020) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 151–193, ISBN 978-3-030-43735-0, https://doi.org/10.1007/978-3-030-43736-7_6 Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2020) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, pp 151–193, ISBN 978-3-030-43735-0, https://​doi.​org/​10.​1007/​978-3-030-43736-7_​6
54.
Zurück zum Zitat Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRef Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRef
55.
Zurück zum Zitat Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef
57.
Zurück zum Zitat Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693MathSciNetMATHCrossRef Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693MathSciNetMATHCrossRef
70.
Zurück zum Zitat Murugan M, Ghoshal A, Xu F, Hsu M-C, Bazilevs Y, Bravo L, Kerner K (2017) Analytical study of articulating turbine rotor blade concept for improved off-design performance of gas turbine engines. J Eng Gas Turbines Power 139:102601–6CrossRef Murugan M, Ghoshal A, Xu F, Hsu M-C, Bazilevs Y, Bravo L, Kerner K (2017) Analytical study of articulating turbine rotor blade concept for improved off-design performance of gas turbine engines. J Eng Gas Turbines Power 139:102601–6CrossRef
71.
Zurück zum Zitat Kozak N, Xu F, Rajanna MR, Bravo L, Murugan M, Ghoshal A, Bazilevs Y, Hsu M-C (2020) High-fidelity finite element modeling and analysis of adaptive gas turbine stator-rotor flow interaction at off-design conditions. J Mech 36:595–606CrossRef Kozak N, Xu F, Rajanna MR, Bravo L, Murugan M, Ghoshal A, Bazilevs Y, Hsu M-C (2020) High-fidelity finite element modeling and analysis of adaptive gas turbine stator-rotor flow interaction at off-design conditions. J Mech 36:595–606CrossRef
72.
Zurück zum Zitat Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu M-C, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13:4283CrossRef Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu M-C, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13:4283CrossRef
78.
Zurück zum Zitat Xu S, Liu N, Yan J (2019) Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids 188:114–124MathSciNetMATHCrossRef Xu S, Liu N, Yan J (2019) Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids 188:114–124MathSciNetMATHCrossRef
79.
Zurück zum Zitat Yan J, Yan W, Lin S, Wagner G (2018) A fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidification. Comput Methods Appl Mech Eng 336:444–470MathSciNetMATHCrossRef Yan J, Yan W, Lin S, Wagner G (2018) A fully coupled finite element formulation for liquid-solid-gas thermo-fluid flow with melting and solidification. Comput Methods Appl Mech Eng 336:444–470MathSciNetMATHCrossRef
80.
Zurück zum Zitat Yan J, Lin SS, Bazilevs Y, Wagner G (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789MathSciNetMATHCrossRef Yan J, Lin SS, Bazilevs Y, Wagner G (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789MathSciNetMATHCrossRef
81.
Zurück zum Zitat Zhao Z, Zhu Q, Yan J (2021) A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function. Comput Methods Appl Mech Eng 373:113518MathSciNetMATHCrossRef Zhao Z, Zhu Q, Yan J (2021) A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function. Comput Methods Appl Mech Eng 373:113518MathSciNetMATHCrossRef
83.
Zurück zum Zitat Zhu Q, Xu F, Xu S, Hsu M-C, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng 361:112748MathSciNetMATHCrossRef Zhu Q, Xu F, Xu S, Hsu M-C, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng 361:112748MathSciNetMATHCrossRef
85.
Zurück zum Zitat Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetMATHCrossRef Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetMATHCrossRef
86.
Zurück zum Zitat Hsu M-C, Wang C, Xu F, Herrema AJ, Krishnamurthy A (2016) Direct immersogeometric fluid flow analysis using B-rep CAD models. Comput Aided Geom Des 43:143–158MathSciNetMATHCrossRef Hsu M-C, Wang C, Xu F, Herrema AJ, Krishnamurthy A (2016) Direct immersogeometric fluid flow analysis using B-rep CAD models. Comput Aided Geom Des 43:143–158MathSciNetMATHCrossRef
87.
Zurück zum Zitat Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C (2016) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 141:135–154MathSciNetMATHCrossRef Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C (2016) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 141:135–154MathSciNetMATHCrossRef
88.
Zurück zum Zitat Wang C, Xu F, Hsu M-C, Krishnamurthy A (2017) Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Comput Aided Geom Des 52–53:190–204MathSciNetMATHCrossRef Wang C, Xu F, Hsu M-C, Krishnamurthy A (2017) Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Comput Aided Geom Des 52–53:190–204MathSciNetMATHCrossRef
89.
Zurück zum Zitat Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B (2019) Immersogeometric analysis of moving objects in incompressible flows. Comput Fluids 189:24–33MathSciNetMATHCrossRef Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B (2019) Immersogeometric analysis of moving objects in incompressible flows. Comput Fluids 189:24–33MathSciNetMATHCrossRef
90.
Zurück zum Zitat Xu S, Gao B, Lofquist A, Fernando M, Hsu M-C, Sundar H, Ganapathysubramanian B (2020) An octree-based immersogeometric approach for modeling inertial migration of particles in channels. Comput Fluids 214:104764MathSciNetMATHCrossRef Xu S, Gao B, Lofquist A, Fernando M, Hsu M-C, Sundar H, Ganapathysubramanian B (2020) An octree-based immersogeometric approach for modeling inertial migration of particles in channels. Comput Fluids 214:104764MathSciNetMATHCrossRef
91.
Zurück zum Zitat Kamensky D, Evans JA, Hsu M-C (2015) Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun Comput Phys 18:1147–1180MathSciNetMATHCrossRef Kamensky D, Evans JA, Hsu M-C (2015) Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun Comput Phys 18:1147–1180MathSciNetMATHCrossRef
93.
Zurück zum Zitat Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. Comput Methods Appl Mech Eng 314:408–472MathSciNetMATHCrossRef Kamensky D, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR (2017) Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. Comput Methods Appl Mech Eng 314:408–472MathSciNetMATHCrossRef
94.
Zurück zum Zitat Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int J Numer Methods Biomed Eng 34:e2938MathSciNetCrossRef Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int J Numer Methods Biomed Eng 34:e2938MathSciNetCrossRef
96.
Zurück zum Zitat Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31CrossRef Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31CrossRef
97.
Zurück zum Zitat Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556MathSciNetMATHCrossRef Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556MathSciNetMATHCrossRef
98.
Zurück zum Zitat Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci 117:19007–19016CrossRef Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci 117:19007–19016CrossRef
101.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143. ASME, New York, pp 7–24 Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space-time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143. ASME, New York, pp 7–24
121.
Zurück zum Zitat Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 379–386, ISBN 978-3-319-40825-5. https://doi.org/10.1007/978-3-319-40827-9_29 Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 379–386, ISBN 978-3-319-40825-5. https://​doi.​org/​10.​1007/​978-3-319-40827-9_​29
122.
Zurück zum Zitat Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 29–89, ISBN 978-3-319-96468-3. https://doi.org/10.1007/978-3-319-96469-0_2 Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 29–89, ISBN 978-3-319-96468-3. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​2
125.
Zurück zum Zitat Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 159–178, ISBN 978-3-319-40825-5. https://doi.org/10.1007/978-3-319-40827-9_13 Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 159–178, ISBN 978-3-319-40825-5. https://​doi.​org/​10.​1007/​978-3-319-40827-9_​13
126.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the Space-Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. lecture notes in applied and computational mechanics. Springer, pp 77–99, ISBN 978-3-319-59547-4. https://doi.org/10.1007/978-3-319-59548-1_6 Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the Space-Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. lecture notes in applied and computational mechanics. Springer, pp 77–99, ISBN 978-3-319-59547-4. https://​doi.​org/​10.​1007/​978-3-319-59548-1_​6
129.
Zurück zum Zitat Takizawa K, Terahara T, Tezduyar TE (2020) Space-time flow computation with contact between the moving solid surfaces. Springer, Berlin Takizawa K, Terahara T, Tezduyar TE (2020) Space-time flow computation with contact between the moving solid surfaces. Springer, Berlin
134.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 399–434, ISBN 978-3-319-96468-3, https://doi.org/10.1007/978-3-319-96469-0_10 Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 399–434, ISBN 978-3-319-96468-3, https://​doi.​org/​10.​1007/​978-3-319-96469-0_​10
136.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 337–376, ISBN 978-3-319-96468-3. https://doi.org/10.1007/978-3-319-96469-0_8 Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, modeling and simulation in science, engineering and technology. Springer, pp 337–376, ISBN 978-3-319-96468-3. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​8
139.
Zurück zum Zitat Tezduyar TE, Takizawa K, Kuraishi T (2020) Space-time computational FSI and flow analysis: 2004 and beyond. Springer, Berlin Tezduyar TE, Takizawa K, Kuraishi T (2020) Space-time computational FSI and flow analysis: 2004 and beyond. Springer, Berlin
146.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATHCrossRef Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATHCrossRef
147.
Zurück zum Zitat Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150MATHCrossRef Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150MATHCrossRef
149.
Zurück zum Zitat Takizawa K, Tezduyar TE, Sasaki T (2018) Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization. In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. lecture notes in applied and computational mechanics. Springer, pp 101–122, ISBN 978-3-319-59547-4. https://doi.org/10.1007/978-3-319-59548-1_7 Takizawa K, Tezduyar TE, Sasaki T (2018) Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization. In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. lecture notes in applied and computational mechanics. Springer, pp 101–122, ISBN 978-3-319-59547-4. https://​doi.​org/​10.​1007/​978-3-319-59548-1_​7
153.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Methods Eng 89:323–336MATHCrossRef Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Methods Eng 89:323–336MATHCrossRef
154.
Zurück zum Zitat Bazilevs Y, Deng X, Korobenko A, di Scalea FL, Todd MD, Taylor SG (2015) Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J Appl Mech 82:091008CrossRef Bazilevs Y, Deng X, Korobenko A, di Scalea FL, Todd MD, Taylor SG (2015) Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J Appl Mech 82:091008CrossRef
155.
Zurück zum Zitat Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetMATHCrossRef Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetMATHCrossRef
156.
Zurück zum Zitat Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500MathSciNetMATHCrossRef Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500MathSciNetMATHCrossRef
157.
Zurück zum Zitat Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishnamurthy A, Hsu M-C (2017) A framework for parametric design optimization using isogeometric analysis. Comput Methods Appl Mech Eng 316:944–965MathSciNetMATHCrossRef Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishnamurthy A, Hsu M-C (2017) A framework for parametric design optimization using isogeometric analysis. Comput Methods Appl Mech Eng 316:944–965MathSciNetMATHCrossRef
158.
Zurück zum Zitat Benzaken J, Herrema AJ, Hsu M-C, Evans JA (2017) A rapid and efficient isogeometric design space exploration framework with application to structural mechanics. Comput Methods Appl Mech Eng 316:1215–1256MathSciNetMATHCrossRef Benzaken J, Herrema AJ, Hsu M-C, Evans JA (2017) A rapid and efficient isogeometric design space exploration framework with application to structural mechanics. Comput Methods Appl Mech Eng 316:1215–1256MathSciNetMATHCrossRef
159.
Zurück zum Zitat Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetMATHCrossRef Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetMATHCrossRef
160.
Zurück zum Zitat Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840MathSciNetMATHCrossRef Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840MathSciNetMATHCrossRef
161.
Zurück zum Zitat Herrema AJ, Kiendl J, Hsu M-C (2019) A framework for isogeometric-analysis-based optimization of wind turbine blade structures. Wind Energy 22:153–170CrossRef Herrema AJ, Kiendl J, Hsu M-C (2019) A framework for isogeometric-analysis-based optimization of wind turbine blade structures. Wind Energy 22:153–170CrossRef
162.
163.
Zurück zum Zitat Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54:341–355MathSciNetMATHCrossRef Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54:341–355MathSciNetMATHCrossRef
166.
Zurück zum Zitat Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference (2001) CD-ROM. Swansea, Wales Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference (2001) CD-ROM. Swansea, Wales
168.
Zurück zum Zitat Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Volume 3: Fluids, Chapter 17, Wiley, ISBN 978-0-470-84699-5, https://doi.org/10.1002/0470091355.ecm069 Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Volume 3: Fluids, Chapter 17, Wiley, ISBN 978-0-470-84699-5, https://​doi.​org/​10.​1002/​0470091355.​ecm069
170.
Zurück zum Zitat Castorrini A, Corsini A, Rispoli F, Venturini P, Takizawa K, Tezduyar TE (2016) SUPG/PSPG computational analysis of rain erosion in wind-turbine blades. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 77–96, ISBN 978-3-319-40825-5, https://doi.org/10.1007/978-3-319-40827-9_7 Castorrini A, Corsini A, Rispoli F, Venturini P, Takizawa K, Tezduyar TE (2016) SUPG/PSPG computational analysis of rain erosion in wind-turbine blades. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 77–96, ISBN 978-3-319-40825-5, https://​doi.​org/​10.​1007/​978-3-319-40827-9_​7
179.
Zurück zum Zitat Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, M. of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291. https://doi.org/10.1007/s00466-011-0599-0 Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, M. of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291. https://​doi.​org/​10.​1007/​s00466-011-0599-0
Metadaten
Titel
Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework
verfasst von
Takashi Kuraishi
Fulin Zhang
Kenji Takizawa
Tayfun E. Tezduyar
Publikationsdatum
10.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02022-4

Weitere Artikel der Ausgabe 1/2021

Computational Mechanics 1/2021 Zur Ausgabe

Neuer Inhalt