Skip to main content
Erschienen in: Microsystem Technologies 8/2020

22.02.2020 | Technical Paper

A powerless iron oxide based magnetometer

verfasst von: Tyler Coughlin, Reza Rashidi

Erschienen in: Microsystem Technologies | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper demonstrates a novel device visualizing and determining magnetic fields in six different directions. The device can be used in applications such as remote real estate construction sites requiring an inexpensive and powerless method of detection and determination of a magnetic field. The magnetometer uses magnetic properties of nanostructured iron oxide to aid in visualizing the location, direction and strength of magnetic fields. The device utilizes various sizes of permanent magnets which attract and hold the iron oxide nanoparticles in mini channels when there is no external magnetic field in the environment. Upon exposing to a magnetic field stronger than the magnetic strength of the holding magnet, the particles are repelled toward the external field. The magnetometer was fabricated by making tubes in an acrylic block in three dimensions and six directions, and filling them with iron oxide nanoparticles. The inner ends of the tubes were plugged by various sizes of permanent magnets and the outer ends were sealed by glass sheets. The device was exposed to different external fields created by various permanent magnets and successfully tested using a reference Gauss meter. The device was capable of identifying external magnetic fields up to 1455 Gauss.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon KH, Georgescu E, Harvey P, Hillenmaier O (2008) The THEMIS fluxgate magnetometer. Space Sci Rev 141(1–4):235–264 Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon KH, Georgescu E, Harvey P, Hillenmaier O (2008) The THEMIS fluxgate magnetometer. Space Sci Rev 141(1–4):235–264
Zurück zum Zitat Baltag O (2013) Orthogonal fields controlled fluxgate with ferrofluid. Sensor Lett 11(1):102–105 Baltag O (2013) Orthogonal fields controlled fluxgate with ferrofluid. Sensor Lett 11(1):102–105
Zurück zum Zitat Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B Chem 157(1):183–188 Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B Chem 157(1):183–188
Zurück zum Zitat Bower K, Colon R, Karnyski C, Minkel J, Rashidi R (2018) Piezoelectric-based monitoring of restless legs syndrome (RLS). In: International conference on mechatronics and intelligent robotics 2018 May 19. Springer, Cham, pp 923–930 Bower K, Colon R, Karnyski C, Minkel J, Rashidi R (2018) Piezoelectric-based monitoring of restless legs syndrome (RLS). In: International conference on mechatronics and intelligent robotics 2018 May 19. Springer, Cham, pp 923–930
Zurück zum Zitat Brown P, Beek T, Carr C, O’Brien H, Cupido E, Oddy T, Horbury TS (2012) Magnetoresistive magnetometer for space science applications. Meas Sci Technol 23(2):025902 Brown P, Beek T, Carr C, O’Brien H, Cupido E, Oddy T, Horbury TS (2012) Magnetoresistive magnetometer for space science applications. Meas Sci Technol 23(2):025902
Zurück zum Zitat Budker D (2003) A new spin on magnetometry. Nature 422(6932):574–575 Budker D (2003) A new spin on magnetometry. Nature 422(6932):574–575
Zurück zum Zitat Budker D, Romalis M (2007) Optical magnetometry. Nat Phys 3(4):227–234 Budker D, Romalis M (2007) Optical magnetometry. Nat Phys 3(4):227–234
Zurück zum Zitat Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499 Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499
Zurück zum Zitat Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53(8):3436–3441 Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53(8):3436–3441
Zurück zum Zitat Cai Y, Zhao Y, Ding X, Fennelly J (2012) Magnetometer basics for mobile phone applications. Electron Prod 54(2):1–3 Cai Y, Zhao Y, Ding X, Fennelly J (2012) Magnetometer basics for mobile phone applications. Electron Prod 54(2):1–3
Zurück zum Zitat Cochrane CJ, Blacksberg J, Anders MA, Lenahan PM (2016) Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci Rep 6:37077 Cochrane CJ, Blacksberg J, Anders MA, Lenahan PM (2016) Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci Rep 6:37077
Zurück zum Zitat Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, Wang ZL (2012) Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett 12(7):3701–3705 Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, Wang ZL (2012) Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett 12(7):3701–3705
Zurück zum Zitat Dai J, Yang M, Li X, Liu H, Tong X (2011) Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt Fiber Technol 17(3):210–213 Dai J, Yang M, Li X, Liu H, Tong X (2011) Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt Fiber Technol 17(3):210–213
Zurück zum Zitat Duell T, Muehlbauer M, Seitzinger T, Westfall J, Rashidi R (2018) MEMS capacitive sensor for wound monitoring applications. In: IOP conference series: materials science and engineering 2018 September, vol 417(1). IOP Publishing, New York, p 012040 Duell T, Muehlbauer M, Seitzinger T, Westfall J, Rashidi R (2018) MEMS capacitive sensor for wound monitoring applications. In: IOP conference series: materials science and engineering 2018 September, vol 417(1). IOP Publishing, New York, p 012040
Zurück zum Zitat Fujimaki N, Tamura H, Imamura T, Hasuo S (1988) A single-chip SQUID magnetometer. IEEE Trans Electron Dev 35(12):2412–2418 Fujimaki N, Tamura H, Imamura T, Hasuo S (1988) A single-chip SQUID magnetometer. IEEE Trans Electron Dev 35(12):2412–2418
Zurück zum Zitat Gao Y, Huang JP, Liu YM, Gao L, Yu KW, Zhang X (2010) Optical negative refraction in ferrofluids with magnetocontrollability. Phys Rev Lett 104(3):034501 Gao Y, Huang JP, Liu YM, Gao L, Yu KW, Zhang X (2010) Optical negative refraction in ferrofluids with magnetocontrollability. Phys Rev Lett 104(3):034501
Zurück zum Zitat Gao R, Jiang Y, Abdelaziz S (2013) All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. Opt Lett 38(9):1539–1541 Gao R, Jiang Y, Abdelaziz S (2013) All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. Opt Lett 38(9):1539–1541
Zurück zum Zitat Hatipoglu G, Tadigadapa S (2015) Micromachined magnetoflexoelastic resonator based magnetometer. Appl Phys Lett 107(19):192406 Hatipoglu G, Tadigadapa S (2015) Micromachined magnetoflexoelastic resonator based magnetometer. Appl Phys Lett 107(19):192406
Zurück zum Zitat Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129(35):10929–10936 Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129(35):10929–10936
Zurück zum Zitat Homa D, Pickrell G (2014) Magnetic sensing with ferrofluid and fiber optic connectors. Sensors 14(3):3891–3896 Homa D, Pickrell G (2014) Magnetic sensing with ferrofluid and fiber optic connectors. Sensors 14(3):3891–3896
Zurück zum Zitat Ilmoniemi R, Hari R, Reinikainen K (1984) A four-channel SQUID magnetometer for brain research. Electroencephalogr Clin Neurophysiol 58(5):467–473 Ilmoniemi R, Hari R, Reinikainen K (1984) A four-channel SQUID magnetometer for brain research. Electroencephalogr Clin Neurophysiol 58(5):467–473
Zurück zum Zitat Ji H, Pu S, Wang X, Yu G (2012) Magnetic field sensing based on V-shaped groove filled with magnetic fluids. Appl Opt 51(8):1010–1020 Ji H, Pu S, Wang X, Yu G (2012) Magnetic field sensing based on V-shaped groove filled with magnetic fluids. Appl Opt 51(8):1010–1020
Zurück zum Zitat Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138(2):572–580 Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138(2):572–580
Zurück zum Zitat Kohout S, Roos J, Keller H (2007) Novel sensor design for torque magnetometry. Rev Sci Instrum 78(1):013903 Kohout S, Roos J, Keller H (2007) Novel sensor design for torque magnetometry. Rev Sci Instrum 78(1):013903
Zurück zum Zitat Kominis IK, Kornack TW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422(6932):596–599 Kominis IK, Kornack TW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422(6932):596–599
Zurück zum Zitat Le Contel O, Leroy P, Roux A, Coillot C, Alison D, Bouabdellah A, Mirioni L, Meslier L, Galic A, Vassal MC, Torbert RB (2016) The search-coil magnetometer for MMS. Space Sci Rev 199(1–4):257–282 Le Contel O, Leroy P, Roux A, Coillot C, Alison D, Bouabdellah A, Mirioni L, Meslier L, Galic A, Vassal MC, Torbert RB (2016) The search-coil magnetometer for MMS. Space Sci Rev 199(1–4):257–282
Zurück zum Zitat Lee LP, Char K, Colclough MS, Zaharchuk G (1991) Monolithic 77 K dc SQUID magnetometer. Appl Phys Lett 59(23):3051–3053 Lee LP, Char K, Colclough MS, Zaharchuk G (1991) Monolithic 77 K dc SQUID magnetometer. Appl Phys Lett 59(23):3051–3053
Zurück zum Zitat Leger JM, Bertrand F, Jager T, Le Prado M, Fratter I, Lalaurie JC (2009) Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Proc Chem 1(1):634–637 Leger JM, Bertrand F, Jager T, Le Prado M, Fratter I, Lalaurie JC (2009) Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Proc Chem 1(1):634–637
Zurück zum Zitat Li C, Shen Y, Jia M, Sheng S, Adebajo MO, Zhu H (2008) Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catal Commun 9(3):355–361 Li C, Shen Y, Jia M, Sheng S, Adebajo MO, Zhu H (2008) Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catal Commun 9(3):355–361
Zurück zum Zitat Li Z, Chen S, Zhang S, Guo X, Cao Q (2016) Overhauser magnetometer sensor design for magnetic field observation. In: Radiation detectors: systems and applications XVII 2016 October 3, vol 9969. International Society for Optics and Photonics, New York, p 99690Q Li Z, Chen S, Zhang S, Guo X, Cao Q (2016) Overhauser magnetometer sensor design for magnetic field observation. In: Radiation detectors: systems and applications XVII 2016 October 3, vol 9969. International Society for Optics and Photonics, New York, p 99690Q
Zurück zum Zitat Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4–5):1650–1654 Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4–5):1650–1654
Zurück zum Zitat Liu H, Dong H, Liu Z, Ge J, Bai B, Zhang C (2017) Noise characterization for the FID signal from proton precession magnetometer. J Instrum 12(07):P07019 Liu H, Dong H, Liu Z, Ge J, Bai B, Zhang C (2017) Noise characterization for the FID signal from proton precession magnetometer. J Instrum 12(07):P07019
Zurück zum Zitat Meyners D, Von Hofe T, Vieth M, Rührig M, Schmitt S, Quandt E (2009) Pressure sensor based on magnetic tunnel junctions. J Appl Phys 105(7):07C914 Meyners D, Von Hofe T, Vieth M, Rührig M, Schmitt S, Quandt E (2009) Pressure sensor based on magnetic tunnel junctions. J Appl Phys 105(7):07C914
Zurück zum Zitat Pang H, Li J, Chen D, Pan M, Luo S, Zhang Q, Luo F (2013) Calibration of three-axis fluxgate magnetometers with nonlinear least square method. Measurement 46(4):1600–1606 Pang H, Li J, Chen D, Pan M, Luo S, Zhang Q, Luo F (2013) Calibration of three-axis fluxgate magnetometers with nonlinear least square method. Measurement 46(4):1600–1606
Zurück zum Zitat Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core–shell nanoclusters for biomedical applications. J Nanopart Res 8(3–4):489–496 Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core–shell nanoclusters for biomedical applications. J Nanopart Res 8(3–4):489–496
Zurück zum Zitat Rashidi R, Alenezi J, Czechowski J, Niver J, Mohammad S (2019) Graphite-on-paper-based resistive sensing device for aqueous chemical identification. Chem Pap 73(11):2845–2855 Rashidi R, Alenezi J, Czechowski J, Niver J, Mohammad S (2019) Graphite-on-paper-based resistive sensing device for aqueous chemical identification. Chem Pap 73(11):2845–2855
Zurück zum Zitat Roetenberg D, Slycke P, Ventevogel A, Veltink PH (2007) A portable magnetic position and orientation tracker. Sens Actuators B Phys 135(2):426–432 Roetenberg D, Slycke P, Ventevogel A, Veltink PH (2007) A portable magnetic position and orientation tracker. Sens Actuators B Phys 135(2):426–432
Zurück zum Zitat Russenschuck S (2017) Rotating-and translating-coil magnetometers for extracting pseudo-multipoles in accelerator magnets. COMPEL Int J Comput Math Electr Electron Eng 36:1552–1567 Russenschuck S (2017) Rotating-and translating-coil magnetometers for extracting pseudo-multipoles in accelerator magnets. COMPEL Int J Comput Math Electr Electron Eng 36:1552–1567
Zurück zum Zitat Schwindt PD, Knappe S, Shah V, Hollberg L, Kitching J, Liew LA, Moreland J (2004) Chip-scale atomic magnetometer. Appl Phys Lett 85(26):6409–6411 Schwindt PD, Knappe S, Shah V, Hollberg L, Kitching J, Liew LA, Moreland J (2004) Chip-scale atomic magnetometer. Appl Phys Lett 85(26):6409–6411
Zurück zum Zitat Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2011) The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 23(44):5243–5249 Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2011) The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 23(44):5243–5249
Zurück zum Zitat Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer PR, Yacoby A, Walsworth R, Lukin MD (2008) High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4(10):810–816 Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer PR, Yacoby A, Walsworth R, Lukin MD (2008) High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4(10):810–816
Zurück zum Zitat Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45 Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45
Zurück zum Zitat Uddin MA, Tsuda H, Wu S, Sasaoka E (2008) Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel 87(4–5):451–459 Uddin MA, Tsuda H, Wu S, Sasaoka E (2008) Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel 87(4–5):451–459
Zurück zum Zitat Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35 Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35
Zurück zum Zitat Weinstock H (ed) (2012) SQUID sensors: fundamentals, fabrication and applications. Springer Weinstock H (ed) (2012) SQUID sensors: fundamentals, fabrication and applications. Springer
Zurück zum Zitat Xu Q, Seidel M, Paprotny I, White RM, Wright PK (2011) Integrated centralized electric current monitoring system using wirelessly enabled non-intrusive ac current sensors. In: SENSORS, IEEE 2011 October 28. IEEE, New York, pp 1998–2001 Xu Q, Seidel M, Paprotny I, White RM, Wright PK (2011) Integrated centralized electric current monitoring system using wirelessly enabled non-intrusive ac current sensors. In: SENSORS, IEEE 2011 October 28. IEEE, New York, pp 1998–2001
Zurück zum Zitat Zhou C, Ding L, Wang D, Kuang Y, Jiang D (2011) Thinned fiber Bragg grating magnetic field sensor with magnetic fluid. In: Photonic microdevices/microstructures for sensing III 2011 May 14, vol 8034. International Society for Optics and Photonics, New York, p 803409 Zhou C, Ding L, Wang D, Kuang Y, Jiang D (2011) Thinned fiber Bragg grating magnetic field sensor with magnetic fluid. In: Photonic microdevices/microstructures for sensing III 2011 May 14, vol 8034. International Society for Optics and Photonics, New York, p 803409
Zurück zum Zitat Zu P, Chan CC, Lew WS, Hu L, Jin Y, Liew HF, Chen LH, Wong WC, Dong X (2012) Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics J 4(2):491–498 Zu P, Chan CC, Lew WS, Hu L, Jin Y, Liew HF, Chen LH, Wong WC, Dong X (2012) Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics J 4(2):491–498
Metadaten
Titel
A powerless iron oxide based magnetometer
verfasst von
Tyler Coughlin
Reza Rashidi
Publikationsdatum
22.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-04789-7

Weitere Artikel der Ausgabe 8/2020

Microsystem Technologies 8/2020 Zur Ausgabe

Neuer Inhalt