Skip to main content

15.04.2024 | Original Paper

A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model

verfasst von: Yuichi Shintaku, Tatsuhiko Inaoka, Kenjiro Terada

Erschienen in: Computational Mechanics

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gurson AL Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction Gurson AL Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction
2.
Zurück zum Zitat Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15CrossRef Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15CrossRef
3.
Zurück zum Zitat Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407CrossRef Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407CrossRef
4.
Zurück zum Zitat Tvergaard V (1982) Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids 30(6):399–425CrossRef Tvergaard V (1982) Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids 30(6):399–425CrossRef
5.
Zurück zum Zitat Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256CrossRef Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256CrossRef
6.
Zurück zum Zitat Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169CrossRef Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169CrossRef
7.
Zurück zum Zitat Zhang KS, Bai JB, Francois D (2001) Numerical analysis of the influence of the lode parameter on void growth. Int J Solids Struct 38(32):5847–5856CrossRef Zhang KS, Bai JB, Francois D (2001) Numerical analysis of the influence of the lode parameter on void growth. Int J Solids Struct 38(32):5847–5856CrossRef
8.
Zurück zum Zitat Kim J, Gao X, Srivatsan TS (2003) Modeling of crack growth in ductile solids: a three-dimensional analysis. Int J Solids Struct 40(26):7357–7374CrossRef Kim J, Gao X, Srivatsan TS (2003) Modeling of crack growth in ductile solids: a three-dimensional analysis. Int J Solids Struct 40(26):7357–7374CrossRef
9.
Zurück zum Zitat Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71(3):379–400CrossRef Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71(3):379–400CrossRef
10.
Zurück zum Zitat Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43(20):6277–6293CrossRef Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43(20):6277–6293CrossRef
11.
Zurück zum Zitat Malcher L, Pires FMA, de Sá JMAC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30–31:81–115CrossRef Malcher L, Pires FMA, de Sá JMAC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30–31:81–115CrossRef
12.
Zurück zum Zitat Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75(11):3343–3366CrossRef Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75(11):3343–3366CrossRef
13.
Zurück zum Zitat Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27(1):1CrossRef Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27(1):1CrossRef
14.
Zurück zum Zitat Brunig M, Gerke S, Hagenbrock V (2013) Micro-mechanical studies on the effect of the stress triaxiality and the lode parameter on ductile damage. Int J Plast 50:49–65CrossRef Brunig M, Gerke S, Hagenbrock V (2013) Micro-mechanical studies on the effect of the stress triaxiality and the lode parameter on ductile damage. Int J Plast 50:49–65CrossRef
15.
Zurück zum Zitat Brunig M, Gerke S, Hagenbrock V (2014) Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int J Plast 63:49–63; (2014) Deformation Tensors in Material Modeling in Honor of Prof. Otto T, Bruhns Brunig M, Gerke S, Hagenbrock V (2014) Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int J Plast 63:49–63; (2014) Deformation Tensors in Material Modeling in Honor of Prof. Otto T, Bruhns
16.
Zurück zum Zitat Malcher L, Pires FMA, de Sá JMAC (2014) An extended gtn model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228CrossRef Malcher L, Pires FMA, de Sá JMAC (2014) An extended gtn model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228CrossRef
17.
Zurück zum Zitat Aravas N (1987) On the numerical integration of a class of pressure-dependent plasticity models. Int J Numer Methods Eng 24(7):1395–1416CrossRef Aravas N (1987) On the numerical integration of a class of pressure-dependent plasticity models. Int J Numer Methods Eng 24(7):1395–1416CrossRef
18.
Zurück zum Zitat Steinmann P, Miehe C, Stein E (1994) Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials. Comput Mech 13(6):458–474CrossRef Steinmann P, Miehe C, Stein E (1994) Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials. Comput Mech 13(6):458–474CrossRef
19.
Zurück zum Zitat de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications, 1st edn. Wiley, New York de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications, 1st edn. Wiley, New York
20.
Zurück zum Zitat Mano A, Imai R, Miyamoto Y, Lu K, Katsuyama J, Li Y (2022) Improvement of the return mapping algorithm based on the implicit function theorem with application to ductile fracture analysis using the gtn model. Int J Press Vessel Pip 199:104700CrossRef Mano A, Imai R, Miyamoto Y, Lu K, Katsuyama J, Li Y (2022) Improvement of the return mapping algorithm based on the implicit function theorem with application to ductile fracture analysis using the gtn model. Int J Press Vessel Pip 199:104700CrossRef
21.
Zurück zum Zitat Wright M (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(1):39–56MathSciNetCrossRef Wright M (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(1):39–56MathSciNetCrossRef
22.
Zurück zum Zitat Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626MathSciNetCrossRef Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626MathSciNetCrossRef
23.
Zurück zum Zitat Scheunemann L, Nigro PSB, Schröder J, Pimenta PM (2020) A novel algorithm for rate independent small strain crystal plasticity based on the infeasible primal–dual interior point method. Int J Plast 124:1–19CrossRef Scheunemann L, Nigro PSB, Schröder J, Pimenta PM (2020) A novel algorithm for rate independent small strain crystal plasticity based on the infeasible primal–dual interior point method. Int J Plast 124:1–19CrossRef
24.
Zurück zum Zitat Scheunemann L, Nigro PSB, Schröder J (2021) Numerical treatment of small strain single crystal plasticity based on the infeasible primal–dual interior point method. Int J Solids Struct 232:111149CrossRef Scheunemann L, Nigro PSB, Schröder J (2021) Numerical treatment of small strain single crystal plasticity based on the infeasible primal–dual interior point method. Int J Solids Struct 232:111149CrossRef
27.
Zurück zum Zitat Inagaki K, Hashimoto G, Okuda H (2015) Interior point method based contact analysis algorithm for structural analysis of electronic device models. Mech Eng J 2(4):15–00146 Inagaki K, Hashimoto G, Okuda H (2015) Interior point method based contact analysis algorithm for structural analysis of electronic device models. Mech Eng J 2(4):15–00146
28.
Zurück zum Zitat Nigro PSB, Simões ET, Pimenta PM, Schröder J (2019) Model order reduction with Galerkin projection applied to nonlinear optimization with infeasible primal–dual interior point method. Int J Numer Methods Eng 120(12):1310–1348 Nigro PSB, Simões ET, Pimenta PM, Schröder J (2019) Model order reduction with Galerkin projection applied to nonlinear optimization with infeasible primal–dual interior point method. Int J Numer Methods Eng 120(12):1310–1348
29.
Zurück zum Zitat Hencky H (1933) The elastic behavior of vulcanized rubber. Rubber Chem Technol 6(2):217–224CrossRef Hencky H (1933) The elastic behavior of vulcanized rubber. Rubber Chem Technol 6(2):217–224CrossRef
30.
Zurück zum Zitat Chow CL, Lu TJ (1989) On evolution laws of anisotropic damage. Eng Fract Mech 34(3):679–701CrossRef Chow CL, Lu TJ (1989) On evolution laws of anisotropic damage. Eng Fract Mech 34(3):679–701CrossRef
31.
Zurück zum Zitat Lemaitre J, Desmorat R (2005) Engineering damage mechanics, 1st edn Lemaitre J, Desmorat R (2005) Engineering damage mechanics, 1st edn
32.
Zurück zum Zitat Brepols T, Wulfinghoff S, Reese S (2017) Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int J Plast 97:64–106CrossRef Brepols T, Wulfinghoff S, Reese S (2017) Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int J Plast 97:64–106CrossRef
33.
Zurück zum Zitat Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1):83–89CrossRef Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1):83–89CrossRef
34.
Zurück zum Zitat Lemaitre J (1996) A course on damage mechanics Lemaitre J (1996) A course on damage mechanics
35.
Zurück zum Zitat Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833CrossRef Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833CrossRef
36.
Zurück zum Zitat Bouby C, Morin L, Bignonnet F, Dormieux L, Kondo D (2023) On the thermodynamics consistency of Gurson’s model and its computational implications. Int J Solids Struct 279:112359CrossRef Bouby C, Morin L, Bignonnet F, Dormieux L, Kondo D (2023) On the thermodynamics consistency of Gurson’s model and its computational implications. Int J Solids Struct 279:112359CrossRef
37.
Zurück zum Zitat Coussy O (2011) Mechanics and physics of porous solids. Wiley, New York Coussy O (2011) Mechanics and physics of porous solids. Wiley, New York
38.
Zurück zum Zitat Yamashita H (1998) A globally convergent primal-dual interior point method for constrained optimization. Optim Methods Softw 10(2):443–469MathSciNetCrossRef Yamashita H (1998) A globally convergent primal-dual interior point method for constrained optimization. Optim Methods Softw 10(2):443–469MathSciNetCrossRef
39.
Zurück zum Zitat Kami A, Dariani BM, Sadough Vanini A, Comsa DS, Banabic D (2015) Numerical determination of the forming limit curves of anisotropic sheet metals using gtn damage model. J Mater Process Technol 216:472–483 Kami A, Dariani BM, Sadough Vanini A, Comsa DS, Banabic D (2015) Numerical determination of the forming limit curves of anisotropic sheet metals using gtn damage model. J Mater Process Technol 216:472–483
41.
Zurück zum Zitat Kriegm RD (1975) A practical two surface plasticity theory. J Appl Mech Trans ASME 42(3):641–646CrossRef Kriegm RD (1975) A practical two surface plasticity theory. J Appl Mech Trans ASME 42(3):641–646CrossRef
42.
Zurück zum Zitat Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833MathSciNetCrossRef Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833MathSciNetCrossRef
43.
Zurück zum Zitat Espeseth V, Morin D, Børvik T, Hopperstad OS (2023) A gradient-based non-local gtn model: explicit finite element simulation of ductile damage and fracture. Eng Fract Mech 289:109442CrossRef Espeseth V, Morin D, Børvik T, Hopperstad OS (2023) A gradient-based non-local gtn model: explicit finite element simulation of ductile damage and fracture. Eng Fract Mech 289:109442CrossRef
Metadaten
Titel
A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model
verfasst von
Yuichi Shintaku
Tatsuhiko Inaoka
Kenjiro Terada
Publikationsdatum
15.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-024-02466-4

Neuer Inhalt