Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

28.03.2024 | Research

A Quad Port MIMO Antenna Designed with an X-Shaped Decoupling Structure for Wideband Millimeter-Wave (mm-Wave) 5G FR2 New Radio (N258/N261) Bands Applications

verfasst von: Suverna Sengar, Praveen Kumar Malik, Sudipta Das, Tanvir Islam, Rajesh Singh, Sivaji Asha

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a newly developed quad port-MIMO antenna, showcasing notable advancements in performance and an extensive impedance bandwidth. The antenna design is founded on a symmetrical configuration, incorporating an X-shaped decoupling structure, alongside employing the multi-slit and multi-slot techniques. These enhancements culminate in a compact, low-profile antenna measuring 40 × 40 × 0.8 mm, while maintaining a remarkable wideband capability. For experimental purposes, the proposed antenna is fabricated using Roger RT/Duroid 5880 with a dielectric constant of 2.2 and a thickness of 0.8 mm. Our investigations reveal that the antenna's impedance bandwidth spans from 22.5 to 29.2 GHz (bandwidth of 6.7 GHz), ensuring isolation levels surpassing −27 dB. The designed MIMO antenna offers an envelope correlation coefficient of 0.004, a diversity gain of 10.0 dB and a peak gain of 4.25 dB. Remarkably, this antenna successfully balances wide bandwidth, compact dimensions, outstanding isolation and superior MIMO diversity metrics. These qualities make it a desirable choice for 5G new radio bands N258 (24.25–27.5 GHz) and N261 (27.5–28.35 GHz) applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G., Schulz, J., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular. IEEE Access, 1, 335–349.CrossRef Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G., Schulz, J., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular. IEEE Access, 1, 335–349.CrossRef
2.
Zurück zum Zitat Powell, J. & Chandrakasan, A. (2004). Differential and single ended elliptical antennas for 3.1–10.6 GHz ultrawideband communication. In Proceedings of the antennas and propagation society international symposium, Sendai, Japan, pp 2935–2938 Powell, J. & Chandrakasan, A. (2004). Differential and single ended elliptical antennas for 3.1–10.6 GHz ultrawideband communication. In Proceedings of the antennas and propagation society international symposium, Sendai, Japan, pp 2935–2938
3.
Zurück zum Zitat El-Hameed, A. S. A., Wahab, M. G., Elshafey, N. A., & Elpeltagy, M. S. (2021). Quad-port UWB MIMO antenna based on LPF with vast rejection band. AEU-International Journal of Electronics and Communications, 134, 153712. El-Hameed, A. S. A., Wahab, M. G., Elshafey, N. A., & Elpeltagy, M. S. (2021). Quad-port UWB MIMO antenna based on LPF with vast rejection band. AEU-International Journal of Electronics and Communications, 134, 153712.
4.
Zurück zum Zitat Manoharan, H., Selvarajan, S., Yafoz, A., Alterazi, H. A., & Chen, C. (2022). Deep conviction systems for biomedical applications using intuiting procedures with cross point approach. Frontiers in Public Health, 10, 909628.CrossRef Manoharan, H., Selvarajan, S., Yafoz, A., Alterazi, H. A., & Chen, C. (2022). Deep conviction systems for biomedical applications using intuiting procedures with cross point approach. Frontiers in Public Health, 10, 909628.CrossRef
5.
Zurück zum Zitat Iqbal, A., Smida, A., Alazemi, A. J., Waly, M. I., Mallat, N. K., & Kim, S. (2020). Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access, 8, 17935–17944.CrossRef Iqbal, A., Smida, A., Alazemi, A. J., Waly, M. I., Mallat, N. K., & Kim, S. (2020). Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access, 8, 17935–17944.CrossRef
6.
Zurück zum Zitat Kaiser, T., Feng, Z. & Dimitrov, E. (2009). An overview of ultra-wide-band systems with MIMO. In Proceedings IEEE. 97(2), pp 285–312 Kaiser, T., Feng, Z. & Dimitrov, E. (2009). An overview of ultra-wide-band systems with MIMO. In Proceedings IEEE. 97(2), pp 285–312
8.
Zurück zum Zitat Toktas, A., & Akdagli, A. (2015). Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microwaves Antennas Propagation, 9, 822–829.CrossRef Toktas, A., & Akdagli, A. (2015). Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microwaves Antennas Propagation, 9, 822–829.CrossRef
11.
Zurück zum Zitat Pant, M., Malviya, L., & Choudhary, V. (2021). A 28 GHz corporate series-fed taper antenna array for fifth-generation wireless communication. In N. Marriwala, C. C. Tripathi, D. Kumar, & S. Jain (Eds.), mobile radio communications and 5G networks. Lecture notes in networks and systems. (Vol. 140). Singapore: Springer. Pant, M., Malviya, L., & Choudhary, V. (2021). A 28 GHz corporate series-fed taper antenna array for fifth-generation wireless communication. In N. Marriwala, C. C. Tripathi, D. Kumar, & S. Jain (Eds.), mobile radio communications and 5G networks. Lecture notes in networks and systems. (Vol. 140). Singapore: Springer.
15.
Zurück zum Zitat Bang, J., & Choi, J. (2020). A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications. IEEE Access, 8, 139715–139726.CrossRef Bang, J., & Choi, J. (2020). A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications. IEEE Access, 8, 139715–139726.CrossRef
16.
Zurück zum Zitat Ullah, U., Al-Hasan, M., Koziel, S., & Mabrouk, I. B. (2021). A series inclined slot-fed circularly polarized antenna for 5G 28 GHz applications. IEEE Antennas and Wireless Propagation Letters, 20(3), 351–355.CrossRef Ullah, U., Al-Hasan, M., Koziel, S., & Mabrouk, I. B. (2021). A series inclined slot-fed circularly polarized antenna for 5G 28 GHz applications. IEEE Antennas and Wireless Propagation Letters, 20(3), 351–355.CrossRef
20.
Zurück zum Zitat Chandra, R., Sarkar, D., Ganguly, D., Saha, C., Siddiqui, J. Y., & Antar, Y. M. M. (2020). Design of NFRP based sir-loaded two element MIMO antenna system for 28/38 GHz sub mm-wave 5G applications. IEEE 3rd 5G world forum (5GWF) (pp. 514–518). Bangalore: IEEE. Chandra, R., Sarkar, D., Ganguly, D., Saha, C., Siddiqui, J. Y., & Antar, Y. M. M. (2020). Design of NFRP based sir-loaded two element MIMO antenna system for 28/38 GHz sub mm-wave 5G applications. IEEE 3rd 5G world forum (5GWF) (pp. 514–518). Bangalore: IEEE.
22.
24.
Zurück zum Zitat Khan, M. S., Capobianco, A. D., Iftikhar, A., Shubair, R. M., Anagnostou, D. E., & Braaten, B. D. (2017). Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microwaves Antennas Propagation, 11(7), 997–1002.CrossRef Khan, M. S., Capobianco, A. D., Iftikhar, A., Shubair, R. M., Anagnostou, D. E., & Braaten, B. D. (2017). Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microwaves Antennas Propagation, 11(7), 997–1002.CrossRef
25.
Zurück zum Zitat Hussain, M. et al. (2021). Simple geometry multi-bands antenna for millimeter-wave applications at 28 GHz, 38 GHz, and 55 GHz allocated to 5G systems. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE Hussain, M. et al. (2021). Simple geometry multi-bands antenna for millimeter-wave applications at 28 GHz, 38 GHz, and 55 GHz allocated to 5G systems. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE
26.
Zurück zum Zitat Hussain, M., Awan, I. A., Mazhar, A., Rizvi, S. N. R., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2020). A Simple low-profile broadband antenna design for 5G millimeter-wave applications over 38 GHz spectrum. In 2020 IEEE MTT-S Latin America microwave conference (LAMC 2020). IEEE pp 1–4 Hussain, M., Awan, I. A., Mazhar, A., Rizvi, S. N. R., Alibakhshikenari, M., Falcone, F., & Limiti, E. (2020). A Simple low-profile broadband antenna design for 5G millimeter-wave applications over 38 GHz spectrum. In 2020 IEEE MTT-S Latin America microwave conference (LAMC 2020). IEEE pp 1–4
27.
Zurück zum Zitat Awan, I. A. et al. (2021). Single patch fractal-shaped antenna with small footprint area and high radiation properties for wide operation over 5G region. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE Awan, I. A. et al. (2021). Single patch fractal-shaped antenna with small footprint area and high radiation properties for wide operation over 5G region. In 2021 46th international conference on infrared, millimeter and terahertz waves (IRMMW-THz). IEEE
28.
Zurück zum Zitat Hussain, M. et al. (2022) Ultra-wideband mimo antenna realization for indoor Ka-band applications. In 2022 United States national committee of URSI national radio science meeting (USNC-URSI NRSM). IEEE Hussain, M. et al. (2022) Ultra-wideband mimo antenna realization for indoor Ka-band applications. In 2022 United States national committee of URSI national radio science meeting (USNC-URSI NRSM). IEEE
29.
Zurück zum Zitat Hussain, M. et al. (2022) A simple geometrical frequency reconfigurable antenna with miniaturized dimensions for 24.8/28GHz 5G applications. In 2022 16th European conference on antennas and propagation (EuCAP). IEEE Hussain, M. et al. (2022) A simple geometrical frequency reconfigurable antenna with miniaturized dimensions for 24.8/28GHz 5G applications. In 2022 16th European conference on antennas and propagation (EuCAP). IEEE
30.
Zurück zum Zitat Hussain, M. et al. (2022) Circularly polarized wideband antenna for 5G millimeter wave application. In 2022 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting (AP-S/URSI). IEEE Hussain, M. et al. (2022) Circularly polarized wideband antenna for 5G millimeter wave application. In 2022 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting (AP-S/URSI). IEEE
31.
Zurück zum Zitat Jensen, M., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communication. IEEE Transaction on Antennas and Propagation, 52, 2810–2824.CrossRef Jensen, M., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communication. IEEE Transaction on Antennas and Propagation, 52, 2810–2824.CrossRef
32.
33.
Zurück zum Zitat Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. International Journal of Wireless Information Networks, 27, 411–432.CrossRef Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. International Journal of Wireless Information Networks, 27, 411–432.CrossRef
34.
Zurück zum Zitat Addepalli, T., Kamili, J. B., Boddu, S., Manda, R., Nella, A., & Kumar, B. K. (2023). A 4-element crescent shaped two-sided MIMO antenna for UWB, X and Ku band wireless applications. Wireless Networks, 29, 1–16.CrossRef Addepalli, T., Kamili, J. B., Boddu, S., Manda, R., Nella, A., & Kumar, B. K. (2023). A 4-element crescent shaped two-sided MIMO antenna for UWB, X and Ku band wireless applications. Wireless Networks, 29, 1–16.CrossRef
35.
Zurück zum Zitat Jetti, C. R., Addepalli, T., Devireddy, S. R., Tanimki, G. K., Al-Gburi, A. J. A., Zakaria, Z., & Sunitha, P. (2023). Design and analysis of modified U-shaped four element MIMO antenna for dual-band 5G millimeter wave applications. Micromachines, 14(8), 1545.CrossRef Jetti, C. R., Addepalli, T., Devireddy, S. R., Tanimki, G. K., Al-Gburi, A. J. A., Zakaria, Z., & Sunitha, P. (2023). Design and analysis of modified U-shaped four element MIMO antenna for dual-band 5G millimeter wave applications. Micromachines, 14(8), 1545.CrossRef
37.
Zurück zum Zitat Addepalli, T., Sharma, M., Kumar, M. S., Naveen Kumar, G., Kapula, P. R., & Kumar, C. M. (2023). Self-isolated miniaturized four-port multiband 5G sub 6 GHz MIMO antenna exclusively for n77/n78 & n79 wireless band applications. Wireless Networks, 30, 1–17. Addepalli, T., Sharma, M., Kumar, M. S., Naveen Kumar, G., Kapula, P. R., & Kumar, C. M. (2023). Self-isolated miniaturized four-port multiband 5G sub 6 GHz MIMO antenna exclusively for n77/n78 & n79 wireless band applications. Wireless Networks, 30, 1–17.
38.
Zurück zum Zitat Addepalli, T., & Anitha, V. R. (2022). Parametric analysis of compact UWB-MIMO antenna with improved isolation using parasitic reflectors and protruded ground strips. Wireless Personal Communications, 123, 1–17.CrossRef Addepalli, T., & Anitha, V. R. (2022). Parametric analysis of compact UWB-MIMO antenna with improved isolation using parasitic reflectors and protruded ground strips. Wireless Personal Communications, 123, 1–17.CrossRef
39.
Zurück zum Zitat Suverna, S., & Malik, P. K. (2022). A comprehensive survey of massive-MIMO based on 5G antennas.". International Journal of RF and Microwave Computer-Aided Engineering, 32(12), e23496. Suverna, S., & Malik, P. K. (2022). A comprehensive survey of massive-MIMO based on 5G antennas.". International Journal of RF and Microwave Computer-Aided Engineering, 32(12), e23496.
40.
Zurück zum Zitat Haroon, M. S., Abbas, Z. H., Muhammad, F., & Abbas, G. (2019). Coverage analysis of cell edge users in heterogeneous wireless networks using Stienen’s model and RFA SCHEME. International Journal of Communication Systems, 33, e4147.CrossRef Haroon, M. S., Abbas, Z. H., Muhammad, F., & Abbas, G. (2019). Coverage analysis of cell edge users in heterogeneous wireless networks using Stienen’s model and RFA SCHEME. International Journal of Communication Systems, 33, e4147.CrossRef
42.
Zurück zum Zitat Khan, J., Sehrai, D. A., Khan, M. A., Khan, H. A., Ahmad, S., Ali, A., Arif, A., Memon, A. A., & Khan, S. (2019). Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices. Computers Material Continua, 60, 409–420.CrossRef Khan, J., Sehrai, D. A., Khan, M. A., Khan, H. A., Ahmad, S., Ali, A., Arif, A., Memon, A. A., & Khan, S. (2019). Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5G mobile devices. Computers Material Continua, 60, 409–420.CrossRef
43.
Zurück zum Zitat Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter waves wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine, 53, 168–178.CrossRef Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter waves wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine, 53, 168–178.CrossRef
44.
Zurück zum Zitat Sulyman, A. I., Alwarafy, A., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2016). Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands. IEEE Transactions on Wireless Communications, 15, 6939–6947.CrossRef Sulyman, A. I., Alwarafy, A., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2016). Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands. IEEE Transactions on Wireless Communications, 15, 6939–6947.CrossRef
45.
Zurück zum Zitat Ikram, M., Sharawi, M. S., & Shamim, A. (2017). A novel very wideband integrated antenna system for 4G and 5G mm-waveapplications. Microwaves Optical Technology Letters, 59, 3082–3088.CrossRef Ikram, M., Sharawi, M. S., & Shamim, A. (2017). A novel very wideband integrated antenna system for 4G and 5G mm-waveapplications. Microwaves Optical Technology Letters, 59, 3082–3088.CrossRef
46.
Zurück zum Zitat Hussain, S. A., Taher, F., Alzaidi, M. S., Hussain, I., Ghoniem, R. M., Sree, M. F. A., & Lalbakhsh, A. (2017). Wideband, high-gain, and compact four-port MIMO antenna for future 5G devices operating over Ka-band spectrum. Applied Sciences, 13, 4380.CrossRef Hussain, S. A., Taher, F., Alzaidi, M. S., Hussain, I., Ghoniem, R. M., Sree, M. F. A., & Lalbakhsh, A. (2017). Wideband, high-gain, and compact four-port MIMO antenna for future 5G devices operating over Ka-band spectrum. Applied Sciences, 13, 4380.CrossRef
47.
Zurück zum Zitat Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2018). A 28-GHz antenna for 5G MIMO applications. Progress in Electromagnetics Research Letters, 78, 73–79.CrossRef Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2018). A 28-GHz antenna for 5G MIMO applications. Progress in Electromagnetics Research Letters, 78, 73–79.CrossRef
48.
Zurück zum Zitat Sehrai, D. A., Abdullah, M., Altaf, A., Kiani, S. H., Muhammad, F., Tufail, M., Irfan, M., Glowacz, A., & Rahman, S. (2020). a novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics, 9, 1031.CrossRef Sehrai, D. A., Abdullah, M., Altaf, A., Kiani, S. H., Muhammad, F., Tufail, M., Irfan, M., Glowacz, A., & Rahman, S. (2020). a novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics, 9, 1031.CrossRef
49.
Zurück zum Zitat Khalid, M., Naqvi, S. I., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9, 71.CrossRef Khalid, M., Naqvi, S. I., Hussain, N., Rahman, M., Fawad, Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9, 71.CrossRef
50.
Zurück zum Zitat Arabi, O., See, C. H., Ullah, A., Ali, N., Liu, B., Abd-Alhameed, R., McEwan, N. J., & Excell, P. S. (2020). Compact wideband MIMO diversity antenna for mobile applications using multi-layered structure. Electronics, 9, 1307.CrossRef Arabi, O., See, C. H., Ullah, A., Ali, N., Liu, B., Abd-Alhameed, R., McEwan, N. J., & Excell, P. S. (2020). Compact wideband MIMO diversity antenna for mobile applications using multi-layered structure. Electronics, 9, 1307.CrossRef
51.
Zurück zum Zitat Ibrahim, A. A., Ali, W. A. E., Alathbah, M., & Sabek, A. R. (2023). Four-Port 38 GHz MIMO Antenna with High Gain and Isolation for 5G Wireless Networks. Sensors, 23, 3557.CrossRef Ibrahim, A. A., Ali, W. A. E., Alathbah, M., & Sabek, A. R. (2023). Four-Port 38 GHz MIMO Antenna with High Gain and Isolation for 5G Wireless Networks. Sensors, 23, 3557.CrossRef
52.
Zurück zum Zitat Ud Din, I., Alibakhshikenari, M., Virdee, B. S., Jayanthi, R. K. R., Ullah, S., Khan, S., See, C. H., Golunski, L., & Koziel, S. (2023). Frequency-selective surface-based MIMO antenna array for 5G millimeter-wave applications. Sensors, 23, 7009.CrossRef Ud Din, I., Alibakhshikenari, M., Virdee, B. S., Jayanthi, R. K. R., Ullah, S., Khan, S., See, C. H., Golunski, L., & Koziel, S. (2023). Frequency-selective surface-based MIMO antenna array for 5G millimeter-wave applications. Sensors, 23, 7009.CrossRef
Metadaten
Titel
A Quad Port MIMO Antenna Designed with an X-Shaped Decoupling Structure for Wideband Millimeter-Wave (mm-Wave) 5G FR2 New Radio (N258/N261) Bands Applications
verfasst von
Suverna Sengar
Praveen Kumar Malik
Sudipta Das
Tanvir Islam
Rajesh Singh
Sivaji Asha
Publikationsdatum
28.03.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10934-6

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt