Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

29.03.2024

Energy-Efficient Wireless Power Transfer for Sustainable Federated Learning

verfasst von: Youqiang Hu, Hejiao Huang, Nuo Yu

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Federated Learning (FL) has attracted great attention in recent years and is considered as an enabling technology in future smart wireless networks. Nevertheless, this learning paradigm faces a severe challenge in its implementation procedure, i.e., energy shortage issue. Different from the traditional centralized training paradigm, the training procedure of FL is carried out on mobile devices. Generally, the training tasks are computation-intensive and may involve several communication rounds for transmitting large-sized machine learning models, which indicates that they are high energy-consuming. This characteristic increases burden on mobile devices with limited battery capacity. In this paper, we employ the Radio Frequency (RF)-based Wireless Power Transfer (WPT) technology and time switching energy harvesting architecture to realize a sustainable FL framework, and then design a resource optimization strategy based on the dual and line search methods to minimize the amount of Transferred Energy (TE) required for completing the learning. Moreover, we interpret the Karush–Kuhn–Tucker (KKT) conditions of the formulated problem and obtain some engineering insights. Simulation results verify the convergence of the proposed resource optimization strategy and demonstrate the advantage of the proposed framework over the existing work in terms of TE.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This assumption is practical. Due to the size and cost limitation, many mobile devices are only equipped with one antenna. This assumption also exists in many papers, such as [79].
 
2
Note that C3 contains N constraints corresponding to N devices.
 
Literatur
1.
Zurück zum Zitat McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273–1282). McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273–1282).
2.
Zurück zum Zitat Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., & Cui, S. (2020). A joint learning and communications framework for federated learning over wireless networks. IEEE Transactions on Wireless Communications, 20, 269–283.CrossRef Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., & Cui, S. (2020). A joint learning and communications framework for federated learning over wireless networks. IEEE Transactions on Wireless Communications, 20, 269–283.CrossRef
3.
Zurück zum Zitat López, O. L., Alves, H., Souza, R. D., Montejo-Sánchez, S., Fernández, E. M. G., & Latva-Aho, M. (2021). Massive wireless energy transfer: Enabling sustainable IoT toward 6G era. IEEE Internet of Things Journal, 8(11), 8816–8835.CrossRef López, O. L., Alves, H., Souza, R. D., Montejo-Sánchez, S., Fernández, E. M. G., & Latva-Aho, M. (2021). Massive wireless energy transfer: Enabling sustainable IoT toward 6G era. IEEE Internet of Things Journal, 8(11), 8816–8835.CrossRef
4.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). Mimo broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). Mimo broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
5.
Zurück zum Zitat Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.CrossRef Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.CrossRef
6.
Zurück zum Zitat Zeng, Q., Du, Y., Huang, K., & Leung, K. K. (2020). Energy-efficient radio resource allocation for federated edge learning. In 2020 IEEE international conference on communications workshops (ICC workshops) (pp 1–6). IEEE. Zeng, Q., Du, Y., Huang, K., & Leung, K. K. (2020). Energy-efficient radio resource allocation for federated edge learning. In 2020 IEEE international conference on communications workshops (ICC workshops) (pp 1–6). IEEE.
7.
Zurück zum Zitat Yang, Z., Chen, M., Saad, W., Hong, C. S., & Shikh-Bahaei, M. (2020). Energy efficient federated learning over wireless communication networks. IEEE Transactions on Wireless Communications, 20, 1935–1949.CrossRef Yang, Z., Chen, M., Saad, W., Hong, C. S., & Shikh-Bahaei, M. (2020). Energy efficient federated learning over wireless communication networks. IEEE Transactions on Wireless Communications, 20, 1935–1949.CrossRef
8.
Zurück zum Zitat Dinh, C. T., Tran, N. H., Nguyen, M. N., Hong, C. S., Bao, W., Zomaya, A. Y., & Gramoli, V. (2020). Federated learning over wireless networks: Convergence analysis and resource allocation. IEEE/ACM Transactions on Networking, 29, 398–409.CrossRef Dinh, C. T., Tran, N. H., Nguyen, M. N., Hong, C. S., Bao, W., Zomaya, A. Y., & Gramoli, V. (2020). Federated learning over wireless networks: Convergence analysis and resource allocation. IEEE/ACM Transactions on Networking, 29, 398–409.CrossRef
9.
Zurück zum Zitat Yao, J., & Ansari, N. (2020). Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control. IEEE Internet of Things Journal, 8(5), 3438–3445.CrossRef Yao, J., & Ansari, N. (2020). Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control. IEEE Internet of Things Journal, 8(5), 3438–3445.CrossRef
10.
Zurück zum Zitat Li, L., Shi, D., Hou, R., Li, H., Pan, M., & Han, Z. (2021). To talk or to work: Flexible communication compression for energy efficient federated learning over heterogeneous mobile edge devices. In IEEE INFOCOM 2021-IEEE conference on computer communications (pp. 1–10). IEEE. Li, L., Shi, D., Hou, R., Li, H., Pan, M., & Han, Z. (2021). To talk or to work: Flexible communication compression for energy efficient federated learning over heterogeneous mobile edge devices. In IEEE INFOCOM 2021-IEEE conference on computer communications (pp. 1–10). IEEE.
11.
Zurück zum Zitat Mo, X., & Xu, J. (2021). Energy-efficient federated edge learning with joint communication and computation design. Journal of Communications and Information Networks, 6(2), 110–124.CrossRef Mo, X., & Xu, J. (2021). Energy-efficient federated edge learning with joint communication and computation design. Journal of Communications and Information Networks, 6(2), 110–124.CrossRef
12.
Zurück zum Zitat Zeng, Q., Du, Y., Huang, K., & Leung, K. K. (2021). Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing. IEEE Transactions on Wireless Communications, 20, 7947–7962.CrossRef Zeng, Q., Du, Y., Huang, K., & Leung, K. K. (2021). Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing. IEEE Transactions on Wireless Communications, 20, 7947–7962.CrossRef
13.
Zurück zum Zitat Albaseer, A. M., Abdallah, M., Al-Fuqaha, A., & Erbad, A. (2021). Fine-grained data selection for improved energy efficiency of federated edge learning. IEEE Transactions on Network Science and Engineering, 9, 3258–3271.MathSciNetCrossRef Albaseer, A. M., Abdallah, M., Al-Fuqaha, A., & Erbad, A. (2021). Fine-grained data selection for improved energy efficiency of federated edge learning. IEEE Transactions on Network Science and Engineering, 9, 3258–3271.MathSciNetCrossRef
14.
Zurück zum Zitat Ruby, R., Yang, H., de Figueiredo, F. A., Huynh-The, T., & Wu, K. (2022). Energy-efficient multiprocessor-based computation and communication resource allocation in two-tier federated learning networks. IEEE Internet of Things Journal, 10(7), 5689–5703.CrossRef Ruby, R., Yang, H., de Figueiredo, F. A., Huynh-The, T., & Wu, K. (2022). Energy-efficient multiprocessor-based computation and communication resource allocation in two-tier federated learning networks. IEEE Internet of Things Journal, 10(7), 5689–5703.CrossRef
15.
Zurück zum Zitat Battiloro, C., Di Lorenzo, P., Merluzzi, M., & Barbarossa, S. (2022). Lyapunov-based optimization of edge resources for energy-efficient adaptive federated learning. IEEE Transactions on Green Communications and Networking, 7(1), 265–280.CrossRef Battiloro, C., Di Lorenzo, P., Merluzzi, M., & Barbarossa, S. (2022). Lyapunov-based optimization of edge resources for energy-efficient adaptive federated learning. IEEE Transactions on Green Communications and Networking, 7(1), 265–280.CrossRef
16.
Zurück zum Zitat Chen, R., Li, L., Xue, K., Zhang, C., Pan, M., & Fang, Y. (2022). Energy efficient federated learning over heterogeneous mobile devices via joint design of weight quantization and wireless transmission. IEEE Transactions on Mobile Computing, 22, 7451–7465. Chen, R., Li, L., Xue, K., Zhang, C., Pan, M., & Fang, Y. (2022). Energy efficient federated learning over heterogeneous mobile devices via joint design of weight quantization and wireless transmission. IEEE Transactions on Mobile Computing, 22, 7451–7465.
17.
Zurück zum Zitat Peng, C., Hu, Q., Wang, Z., Liu, R. W., & Xiong, Z. (2022). Online-learning-based fast-convergent and energy-efficient device selection in federated edge learning. IEEE Internet of Things Journal, 10(6), 5571–5582.CrossRef Peng, C., Hu, Q., Wang, Z., Liu, R. W., & Xiong, Z. (2022). Online-learning-based fast-convergent and energy-efficient device selection in federated edge learning. IEEE Internet of Things Journal, 10(6), 5571–5582.CrossRef
18.
Zurück zum Zitat Xu, G., Li, X., Li, H., Fan, Q., Wang, X., & Leung, V. C. (2023). Energy-efficient dynamic asynchronous federated learning in mobile edge computing networks. In ICC 2023-IEEE international conference on communications (pp. 160–165). IEEE. Xu, G., Li, X., Li, H., Fan, Q., Wang, X., & Leung, V. C. (2023). Energy-efficient dynamic asynchronous federated learning in mobile edge computing networks. In ICC 2023-IEEE international conference on communications (pp. 160–165). IEEE.
19.
Zurück zum Zitat Magoula, L., Koursioumpas, N., Thanopoulos, A. I., Panagea, T., Petropouleas, N., Gutierrez-Estevez, M., & Khalili, R. (2023). A safe genetic algorithm approach for energy efficient federated learning in wireless communication networks. arXiv preprint arXiv:2306.14237 Magoula, L., Koursioumpas, N., Thanopoulos, A. I., Panagea, T., Petropouleas, N., Gutierrez-Estevez, M., & Khalili, R. (2023). A safe genetic algorithm approach for energy efficient federated learning in wireless communication networks. arXiv preprint arXiv:​2306.​14237
20.
Zurück zum Zitat Ren, Y., Wu, C., & So, D. K. (2023). Joint edge association and aggregation frequency for energy-efficient hierarchical federated learning by deep reinforcement learning. In ICC 2023-IEEE international conference on communications (pp. 3639–3645). IEEE. Ren, Y., Wu, C., & So, D. K. (2023). Joint edge association and aggregation frequency for energy-efficient hierarchical federated learning by deep reinforcement learning. In ICC 2023-IEEE international conference on communications (pp. 3639–3645). IEEE.
21.
Zurück zum Zitat Zhao, T., Chen, X., Sun, Q., & Zhang, J. (2023). Energy-efficient federated learning over cell-free IoT networks: Modeling and optimization. IEEE Internet of Things Journal, 10, 17436–17449.CrossRef Zhao, T., Chen, X., Sun, Q., & Zhang, J. (2023). Energy-efficient federated learning over cell-free IoT networks: Modeling and optimization. IEEE Internet of Things Journal, 10, 17436–17449.CrossRef
22.
Zurück zum Zitat Yao, J., & Sun, X. (2023). Energy-efficient federated learning in internet of drones networks. In 2023 IEEE 24th international conference on high performance switching and routing (HPSR) (pp. 185–190). IEEE. Yao, J., & Sun, X. (2023). Energy-efficient federated learning in internet of drones networks. In 2023 IEEE 24th international conference on high performance switching and routing (HPSR) (pp. 185–190). IEEE.
23.
Zurück zum Zitat Vaishnav, S., Efthymiou, M., & Magnússon, S. (2023). Energy-efficient and adaptive gradient sparsification for federated learning. In ICC 2023-IEEE international conference on communications (pp. 1256–1261). IEEE. Vaishnav, S., Efthymiou, M., & Magnússon, S. (2023). Energy-efficient and adaptive gradient sparsification for federated learning. In ICC 2023-IEEE international conference on communications (pp. 1256–1261). IEEE.
24.
Zurück zum Zitat Tran, H. V., Kaddoum, G., Elgala, H., Abou-Rjeily, C., & Kaushal, H. (2020). Lightwave power transfer for federated learning-based wireless networks. IEEE Communications Letters, 24(7), 1472–1476.CrossRef Tran, H. V., Kaddoum, G., Elgala, H., Abou-Rjeily, C., & Kaushal, H. (2020). Lightwave power transfer for federated learning-based wireless networks. IEEE Communications Letters, 24(7), 1472–1476.CrossRef
25.
Zurück zum Zitat Pham, Q. V., Zeng, M., Ruby, R., Huynh-The, T., & Hwang, W. J. (2021). UAV communications for sustainable federated learning. IEEE Transactions on Vehicular Technology, 70(4), 3944–3948.CrossRef Pham, Q. V., Zeng, M., Ruby, R., Huynh-The, T., & Hwang, W. J. (2021). UAV communications for sustainable federated learning. IEEE Transactions on Vehicular Technology, 70(4), 3944–3948.CrossRef
26.
Zurück zum Zitat Do, Q. V., Pham, Q. V., & Hwang, W. J. (2021). Deep reinforcement learning for energy-efficient federated learning in UAV-enabled wireless powered networks. IEEE Communications Letters, 26, 99–103.CrossRef Do, Q. V., Pham, Q. V., & Hwang, W. J. (2021). Deep reinforcement learning for energy-efficient federated learning in UAV-enabled wireless powered networks. IEEE Communications Letters, 26, 99–103.CrossRef
27.
Zurück zum Zitat Pham, Q. V., Le, M., Huynh-The, T., Han, Z., & Hwang, W. J. (2022). Energy-efficient federated learning over UAV-enabled wireless powered communications. IEEE Transactions on Vehicular Technology, 71, 4977–4990.CrossRef Pham, Q. V., Le, M., Huynh-The, T., Han, Z., & Hwang, W. J. (2022). Energy-efficient federated learning over UAV-enabled wireless powered communications. IEEE Transactions on Vehicular Technology, 71, 4977–4990.CrossRef
28.
Zurück zum Zitat Jiao, X., Wang, Y., Guo, S., Zhang, H., Dai, H., Li, M., & Zhou, P. (2023). Deep reinforcement learning empowers wireless powered mobile edge computing: Towards energy-aware online offloading. IEEE Transactions on Communications, 71(9), 5214–5227.CrossRef Jiao, X., Wang, Y., Guo, S., Zhang, H., Dai, H., Li, M., & Zhou, P. (2023). Deep reinforcement learning empowers wireless powered mobile edge computing: Towards energy-aware online offloading. IEEE Transactions on Communications, 71(9), 5214–5227.CrossRef
29.
Zurück zum Zitat Chen, X., Dai, W., Ni, W., Wang, X., Zhang, S., Xu, S., & Sun, Y. (2023). Augmented deep reinforcement learning for online energy minimization of wireless powered mobile edge computing. IEEE Transactions on Communications, 71(5), 2698–2710.CrossRef Chen, X., Dai, W., Ni, W., Wang, X., Zhang, S., Xu, S., & Sun, Y. (2023). Augmented deep reinforcement learning for online energy minimization of wireless powered mobile edge computing. IEEE Transactions on Communications, 71(5), 2698–2710.CrossRef
30.
Zurück zum Zitat Hu, X., Wong, K. K., & Yang, K. (2018). Wireless powered cooperation-assisted mobile edge computing. IEEE Transactions on Wireless Communications, 17(4), 2375–2388.CrossRef Hu, X., Wong, K. K., & Yang, K. (2018). Wireless powered cooperation-assisted mobile edge computing. IEEE Transactions on Wireless Communications, 17(4), 2375–2388.CrossRef
31.
Zurück zum Zitat Zhou, F., & Hu, R. Q. (2020). Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Transactions on Wireless Communications, 19(5), 3170–3184.CrossRef Zhou, F., & Hu, R. Q. (2020). Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Transactions on Wireless Communications, 19(5), 3170–3184.CrossRef
32.
Zurück zum Zitat Tirronen, T., Larmo, A., Sachs, J., Lindoff, B., & Wiberg, N. (2012). Reducing energy consumption of lte devices for machine-to-machine communication. In 2012 IEEE Globecom workshops (pp. 1650–1656). IEEE. Tirronen, T., Larmo, A., Sachs, J., Lindoff, B., & Wiberg, N. (2012). Reducing energy consumption of lte devices for machine-to-machine communication. In 2012 IEEE Globecom workshops (pp. 1650–1656). IEEE.
33.
Zurück zum Zitat Bi, S., & Zhang, Y. J. (2018). Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Transactions on Wireless Communications, 17(6), 4177–4190.CrossRef Bi, S., & Zhang, Y. J. (2018). Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Transactions on Wireless Communications, 17(6), 4177–4190.CrossRef
34.
Zurück zum Zitat Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.CrossRef Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.CrossRef
35.
Zurück zum Zitat Uysal-Biyikoglu, E., Prabhakar, B., & El Gamal, A. (2002). Energy-efficient packet transmission over a wireless link. IEEE/ACM Transactions on Networking, 10(4), 487–499.CrossRef Uysal-Biyikoglu, E., Prabhakar, B., & El Gamal, A. (2002). Energy-efficient packet transmission over a wireless link. IEEE/ACM Transactions on Networking, 10(4), 487–499.CrossRef
36.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.CrossRef
37.
Zurück zum Zitat Boyd, S., Xiao, L., & Mutapcic, A. (2003). Subgradient methods. In Lecture notes of EE392o. Stanford University Boyd, S., Xiao, L., & Mutapcic, A. (2003). Subgradient methods. In Lecture notes of EE392o. Stanford University
38.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
39.
Zurück zum Zitat Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning convolutional neural networks for resource efficient inference. In International conference on learning representations Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning convolutional neural networks for resource efficient inference. In International conference on learning representations
40.
Zurück zum Zitat Kraft, D. (1988). A software package for sequential quadratic programming Kraft, D. (1988). A software package for sequential quadratic programming
Metadaten
Titel
Energy-Efficient Wireless Power Transfer for Sustainable Federated Learning
verfasst von
Youqiang Hu
Hejiao Huang
Nuo Yu
Publikationsdatum
29.03.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10929-3

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt