Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

04.04.2024

A Systematic Review on Deep Learning Techniques for Diabetic Retinopathy Segmentation and Detection Using Ocular Imaging Modalities

verfasst von: Richa Vij, Sakshi Arora

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diabetic Retinopathy (DR) is a rapidly growing consequence of diabetes mellitus globally. DR causes lesions that can cause blindness if untreated. The significant advancement in deep learning (DL) approaches have proven to be superior to traditional detection methods. This systematic review provides a comprehensive overview of development of DL based approach for DR segmentation and detection (SD) through ocular imaging that help ophthalmologists diagnose DR at early stage. Advances in ocular imaging has developed its contribution towards early detection of DR. Articles on ocular imaging for SD of DR were identified by following PRISMA guidelines using query “Deep Learning”, “Diabetic Retinopathy”, “retinal imaging” alone and in combination in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until 2021. Approximately 1000 publications were searched and 153 relevant studies focused on the DL approaches for SD of utilizing ocular imaging were chosen for study. According to the survey, 66% of researchers employed DL approaches for Blood vessel (BV) segmentation, 36% of researchers used DL approaches for lesion detection, 15% of researchers have used DL approaches for optic disc and optic cup (OD and OC) segmentation for DR Diagnosis. This systematic review provided detailed literature of the state of the art relevant articles for SD of BV, Lesions, OD and OC for non-proliferative DR diagnosis at the early stage and discusses future directions to improve the performance of DL approaches for DR diagnosis and to overcome research challenges. Finally, this article highlights the outline of the proposed work to improve the accuracy of existing models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yadav, P., & Singh, N. P. (2019). Classification of normal and abnormal retinal images by using feature-based machine learning approach. In Recent trends in communication, computing, and electronics (pp. 387–396). Yadav, P., & Singh, N. P. (2019). Classification of normal and abnormal retinal images by using feature-based machine learning approach. In Recent trends in communication, computing, and electronics (pp. 387–396).
2.
Zurück zum Zitat Fisher, D. E., Jonasson, F., Klein, R., Jonsson, P. V., Eiriksdottir, G., Launer, L. J., Gudnason, V., & Cotch, M. F. (2016). Mortality in older persons with retinopathy and concomitant health conditions: The age, gene/environment susceptibility-Reykjavik study. Ophthalmology, 123(7), 1570–1580.CrossRef Fisher, D. E., Jonasson, F., Klein, R., Jonsson, P. V., Eiriksdottir, G., Launer, L. J., Gudnason, V., & Cotch, M. F. (2016). Mortality in older persons with retinopathy and concomitant health conditions: The age, gene/environment susceptibility-Reykjavik study. Ophthalmology, 123(7), 1570–1580.CrossRef
3.
Zurück zum Zitat Qureshi, I., Ma, J., & Abbas, Q. (2019). Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry, 11(6), 749.CrossRef Qureshi, I., Ma, J., & Abbas, Q. (2019). Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry, 11(6), 749.CrossRef
4.
Zurück zum Zitat Acharya, U. R., Mookiah, M. R., Koh, J. E., Tan, J. H., Bhandary, S. V., Rao, A. K., Fujita, H., Hagiwara, Y., Chua, C. K., & Laude, A. (2016). Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Computers in Biology and Medicine, 75, 54–62.CrossRef Acharya, U. R., Mookiah, M. R., Koh, J. E., Tan, J. H., Bhandary, S. V., Rao, A. K., Fujita, H., Hagiwara, Y., Chua, C. K., & Laude, A. (2016). Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Computers in Biology and Medicine, 75, 54–62.CrossRef
5.
Zurück zum Zitat Ting, D. S., Wu, W. C., & Toth, C. (2019). Deep learning for retinopathy of prematurity screening. British Journal of Ophthalmology, 103(5), 577–579.CrossRef Ting, D. S., Wu, W. C., & Toth, C. (2019). Deep learning for retinopathy of prematurity screening. British Journal of Ophthalmology, 103(5), 577–579.CrossRef
6.
Zurück zum Zitat Barkana, B. D., Saricicek, I., & Yildirim, B. (2017). Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowledge-Based Systems, 118, 165–176.CrossRef Barkana, B. D., Saricicek, I., & Yildirim, B. (2017). Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowledge-Based Systems, 118, 165–176.CrossRef
7.
Zurück zum Zitat Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional neural networks for diabetic retinopathy. Procedia Computer Science, 90, 200–205.CrossRef Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional neural networks for diabetic retinopathy. Procedia Computer Science, 90, 200–205.CrossRef
8.
Zurück zum Zitat Vashist, P., Singh, S., Gupta, N., & Saxena, R. (2011). Role of early screening for diabetic retinopathy in patients with diabetes mellitus: An overview. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 36(4), 247.CrossRef Vashist, P., Singh, S., Gupta, N., & Saxena, R. (2011). Role of early screening for diabetic retinopathy in patients with diabetes mellitus: An overview. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 36(4), 247.CrossRef
9.
Zurück zum Zitat Kumar, G., Jain, S., & Singh, U. P. (2020). Stock market forecasting using computational intelligence: A survey. Archives of Computational Methods in Engineering, 28, 1–33. Kumar, G., Jain, S., & Singh, U. P. (2020). Stock market forecasting using computational intelligence: A survey. Archives of Computational Methods in Engineering, 28, 1–33.
10.
Zurück zum Zitat Kour, N., Gupta, S., & Arora, S. (2020). A survey of knee osteoarthritis assessment based on gait. Archives of Computational Methods in Engineering, 28, 1–41. Kour, N., Gupta, S., & Arora, S. (2020). A survey of knee osteoarthritis assessment based on gait. Archives of Computational Methods in Engineering, 28, 1–41.
11.
Zurück zum Zitat Vij, R., & Arora, S. (2022). A systematic survey of advances in retinal imaging modalities for Alzheimer’s disease diagnosis. Metabolic Brain Disease, 37, 1–31.CrossRef Vij, R., & Arora, S. (2022). A systematic survey of advances in retinal imaging modalities for Alzheimer’s disease diagnosis. Metabolic Brain Disease, 37, 1–31.CrossRef
12.
Zurück zum Zitat Vij, R., & Arora, S. (2022). Computer vision with deep learning techniques for neurodegenerative diseases analysis using neuroimaging: A survey. In International conference on innovative computing and communications (pp. 179–189). Vij, R., & Arora, S. (2022). Computer vision with deep learning techniques for neurodegenerative diseases analysis using neuroimaging: A survey. In International conference on innovative computing and communications (pp. 179–189).
16.
Zurück zum Zitat Zabihollahy, F., Lochbihler, A., & Ukwatta, E. (2019). Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images. In Medical imaging 2019: Biomedical applications in molecular, structural, and functional imaging (Vol. 10953, p. 1095308). Zabihollahy, F., Lochbihler, A., & Ukwatta, E. (2019). Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images. In Medical imaging 2019: Biomedical applications in molecular, structural, and functional imaging (Vol. 10953, p. 1095308).
17.
Zurück zum Zitat Keel, S., Wu, J., Lee, P. Y., Scheetz, J., & He, M. (2019). Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmology, 137(3), 288–292.CrossRef Keel, S., Wu, J., Lee, P. Y., Scheetz, J., & He, M. (2019). Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmology, 137(3), 288–292.CrossRef
18.
Zurück zum Zitat Sarki, R., Ahmed, K., Wang, H., & Zhang, Y. (2020). Automatic detection of diabetic eye disease through deep learning using fundus images: A survey. IEEE Access, 8, 151133–151149.CrossRef Sarki, R., Ahmed, K., Wang, H., & Zhang, Y. (2020). Automatic detection of diabetic eye disease through deep learning using fundus images: A survey. IEEE Access, 8, 151133–151149.CrossRef
19.
Zurück zum Zitat Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377.CrossRef Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377.CrossRef
20.
Zurück zum Zitat Amin, J., Sharif, M., & Yasmin, M. (2016). A review on recent developments for detection of diabetic retinopathy. Scientifica 2016. Amin, J., Sharif, M., & Yasmin, M. (2016). A review on recent developments for detection of diabetic retinopathy. Scientifica 2016.
21.
Zurück zum Zitat Gupta, A., & Chhikara, R. (2018). Diabetic retinopathy: Present and past. Procedia Computer Science, 132, 1432–1440.CrossRef Gupta, A., & Chhikara, R. (2018). Diabetic retinopathy: Present and past. Procedia Computer Science, 132, 1432–1440.CrossRef
22.
Zurück zum Zitat Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097–e1000106.CrossRef Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097–e1000106.CrossRef
24.
Zurück zum Zitat Abràmoff Michael, D., Garvin, M. K., & Milan, S. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.CrossRef Abràmoff Michael, D., Garvin, M. K., & Milan, S. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.CrossRef
25.
Zurück zum Zitat Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE, 12(6), e0179957.CrossRef Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE, 12(6), e0179957.CrossRef
26.
Zurück zum Zitat Ting, D. S., Cheung, C. Y., Lim, G., Tan, G. S., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., & Wong, E. Y. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 318(22), 2211–2223.CrossRef Ting, D. S., Cheung, C. Y., Lim, G., Tan, G. S., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I. Y., Lee, S. Y., & Wong, E. Y. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 318(22), 2211–2223.CrossRef
27.
Zurück zum Zitat Wang, S., Tang, H. L., Hu, Y., Sanei, S., Saleh, G. M., & Peto, T. (2016). Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering, 64(5), 990–1002.CrossRef Wang, S., Tang, H. L., Hu, Y., Sanei, S., Saleh, G. M., & Peto, T. (2016). Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering, 64(5), 990–1002.CrossRef
28.
Zurück zum Zitat Xiao, Z., Zhang, X., Geng, L., Zhang, F., Wu, J., Tong, J., Ogunbona, P. O., & Shan, C. (2017). Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomedical Engineering Online, 16(1), 1–9.CrossRef Xiao, Z., Zhang, X., Geng, L., Zhang, F., Wu, J., Tong, J., Ogunbona, P. O., & Shan, C. (2017). Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomedical Engineering Online, 16(1), 1–9.CrossRef
29.
Zurück zum Zitat Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., & Acharya, U. R. (2017). Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 420, 66–76.CrossRef Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., & Acharya, U. R. (2017). Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 420, 66–76.CrossRef
30.
Zurück zum Zitat Ponni Bala, M., & Vijayachitra, S. (2014). Early detection and classification of microaneurysms in retinal fundus images using sequential learning methods. International Journal of Biomedical Engineering and Technology, 15(2), 128–143.CrossRef Ponni Bala, M., & Vijayachitra, S. (2014). Early detection and classification of microaneurysms in retinal fundus images using sequential learning methods. International Journal of Biomedical Engineering and Technology, 15(2), 128–143.CrossRef
31.
Zurück zum Zitat Abbas, Q., Fondon, I., Sarmiento, A., Jiménez, S., & Alemany, P. (2017). Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Medical & Biological Engineering & Computing, 55(11), 1959–1974.CrossRef Abbas, Q., Fondon, I., Sarmiento, A., Jiménez, S., & Alemany, P. (2017). Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Medical & Biological Engineering & Computing, 55(11), 1959–1974.CrossRef
32.
Zurück zum Zitat Ganesan, K., Martis, R. J., Acharya, U. R., Chua, C. K., Min, L. C., Ng, E. Y., & Laude, A. (2014). Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Medical & Biological Engineering & Computing, 52(8), 663–672.CrossRef Ganesan, K., Martis, R. J., Acharya, U. R., Chua, C. K., Min, L. C., Ng, E. Y., & Laude, A. (2014). Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Medical & Biological Engineering & Computing, 52(8), 663–672.CrossRef
33.
Zurück zum Zitat Xu, K., Feng, D., & Mi, H. (2017). Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules, 22(12), 2054.CrossRef Xu, K., Feng, D., & Mi, H. (2017). Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules, 22(12), 2054.CrossRef
34.
Zurück zum Zitat Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & Lamard, M. (2017). Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39, 178–193.CrossRef Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & Lamard, M. (2017). Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39, 178–193.CrossRef
35.
Zurück zum Zitat Wan, S., Liang, Y., & Zhang, Y. (2018). Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers & Electrical Engineering, 72, 274–282.CrossRef Wan, S., Liang, Y., & Zhang, Y. (2018). Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers & Electrical Engineering, 72, 274–282.CrossRef
36.
Zurück zum Zitat Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., & Kang, H. (2019). Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences, 501, 511–522.CrossRef Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., & Kang, H. (2019). Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences, 501, 511–522.CrossRef
37.
Zurück zum Zitat Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12–25.CrossRef Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12–25.CrossRef
38.
Zurück zum Zitat Zhao, Z., Zhang, K., Hao, X., Tian, J., Chua, M. C., Chen, L., & Xu, X. (2019). Bira-net: Bilinear attention net for diabetic retinopathy grading. In 2019 IEEE international conference on image processing (ICIP) (pp. 1385–1389). Zhao, Z., Zhang, K., Hao, X., Tian, J., Chua, M. C., Chen, L., & Xu, X. (2019). Bira-net: Bilinear attention net for diabetic retinopathy grading. In 2019 IEEE international conference on image processing (ICIP) (pp. 1385–1389).
39.
Zurück zum Zitat Islam, S. M., Hasan, M. M., & Abdullah, S. (2018). Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. arXiv:1812.10595 Islam, S. M., Hasan, M. M., & Abdullah, S. (2018). Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. arXiv:​1812.​10595
40.
Zurück zum Zitat Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., Khan, I. A., & Jadoon, W. (2019). A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access, 7, 150530–150539.CrossRef Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., Khan, I. A., & Jadoon, W. (2019). A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access, 7, 150530–150539.CrossRef
41.
Zurück zum Zitat Li, X., Hu, X., Yu, L., Zhu, L., Fu, C. W., & Heng, P. A. (2019). CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Transactions on Medical Imaging, 39(5), 1483–1493.CrossRef Li, X., Hu, X., Yu, L., Zhu, L., Fu, C. W., & Heng, P. A. (2019). CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Transactions on Medical Imaging, 39(5), 1483–1493.CrossRef
42.
Zurück zum Zitat Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., & Qian, W. (2019). An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2045–2048) Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., & Qian, W. (2019). An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2045–2048)
43.
Zurück zum Zitat de La Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465–476.CrossRef de La Torre, J., Valls, A., & Puig, D. (2020). A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 396, 465–476.CrossRef
44.
Zurück zum Zitat Ooi, A. Z., Embong, Z., Abd Hamid, A. I., Zainon, R., Wang, S. L., Ng, T. F., Hamzah, R. A., Teoh, S. S., & Ibrahim, H. (2021). Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors, 21(19), 6380.CrossRef Ooi, A. Z., Embong, Z., Abd Hamid, A. I., Zainon, R., Wang, S. L., Ng, T. F., Hamzah, R. A., Teoh, S. S., & Ibrahim, H. (2021). Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors, 21(19), 6380.CrossRef
45.
Zurück zum Zitat Leandro, J. J., Soaresm J. V., Cesar, R. M., & Jelinek, H. F. (2003). Blood vessels segmentation in nonmydriatic images using wavelets and statistical classifiers. In 16th Brazilian symposium on computer graphics and image processing (SIBGRAPI 2003) (pp. 262–269). Leandro, J. J., Soaresm J. V., Cesar, R. M., & Jelinek, H. F. (2003). Blood vessels segmentation in nonmydriatic images using wavelets and statistical classifiers. In 16th Brazilian symposium on computer graphics and image processing (SIBGRAPI 2003) (pp. 262–269).
46.
Zurück zum Zitat Salem, N. M., & Nandi, A. K. (2007). Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. Journal of the Franklin Institute, 344(3–4), 243–256.CrossRef Salem, N. M., & Nandi, A. K. (2007). Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. Journal of the Franklin Institute, 344(3–4), 243–256.CrossRef
48.
Zurück zum Zitat Ratanapakorn, T., Daengphoonphol, A., Eua-Anant, N., & Yospaiboon, Y. (2019). Digital image processing software for diagnosing diabetic retinopathy from fundus photograph. Clinical Ophthalmology (Auckland, NZ), 13, 641.CrossRef Ratanapakorn, T., Daengphoonphol, A., Eua-Anant, N., & Yospaiboon, Y. (2019). Digital image processing software for diagnosing diabetic retinopathy from fundus photograph. Clinical Ophthalmology (Auckland, NZ), 13, 641.CrossRef
49.
Zurück zum Zitat Sutton, E. (2016). Histograms and the zone system. Illustrated Photography 6–12. Sutton, E. (2016). Histograms and the zone system. Illustrated Photography 6–12.
50.
Zurück zum Zitat Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc. Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc.
51.
Zurück zum Zitat Hossain, F., & Alsharif, M. R. (2007). Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. In 2007 International conference on convergence information technology (ICCIT 2007) (pp. 1439–1444). Hossain, F., & Alsharif, M. R. (2007). Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. In 2007 International conference on convergence information technology (ICCIT 2007) (pp. 1439–1444).
52.
Zurück zum Zitat Sahidan, S. I., Mashor, M. Y., Wahab, A. S., Salleh, Z., & Ja’afar, H. (2008) Local and global contrast stretching for color contrast enhancement on Ziehl-Neelsen tissue section slide images. In 4th Kuala Lumpur international conference on biomedical engineering (pp. 583–586). Sahidan, S. I., Mashor, M. Y., Wahab, A. S., Salleh, Z., & Ja’afar, H. (2008) Local and global contrast stretching for color contrast enhancement on Ziehl-Neelsen tissue section slide images. In 4th Kuala Lumpur international conference on biomedical engineering (pp. 583–586).
53.
Zurück zum Zitat Aziz, T., Ilesanmi, A. E., & Charoenlarpnopparut, C. (2021). Efficient and accurate hemorrhages detection in retinal fundus images using smart window features. Applied Sciences, 11(14), 6391.CrossRef Aziz, T., Ilesanmi, A. E., & Charoenlarpnopparut, C. (2021). Efficient and accurate hemorrhages detection in retinal fundus images using smart window features. Applied Sciences, 11(14), 6391.CrossRef
54.
Zurück zum Zitat Al-amri, S. S., Kalyankar, N. V., & Khamitkar, S. D. (2010). Linear and non-linear contrast enhancement image. IJCSNS International Journal of Computer Science and Network Security, 10(2), 139–143. Al-amri, S. S., Kalyankar, N. V., & Khamitkar, S. D. (2010). Linear and non-linear contrast enhancement image. IJCSNS International Journal of Computer Science and Network Security, 10(2), 139–143.
55.
Zurück zum Zitat Iwasokun, G. B., & Akinyokun, O. C. (2016). Enhancement methods: A review. Science International, 4, 2251–2277. Iwasokun, G. B., & Akinyokun, O. C. (2016). Enhancement methods: A review. Science International, 4, 2251–2277.
56.
Zurück zum Zitat Oh, K., Kang, H. M., Leem, D., Lee, H., Seo, K. Y., & Yoon, S. (2021). Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Scientific Reports, 11(1), 1–9. Oh, K., Kang, H. M., Leem, D., Lee, H., Seo, K. Y., & Yoon, S. (2021). Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Scientific Reports, 11(1), 1–9.
57.
Zurück zum Zitat Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.CrossRef Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.CrossRef
58.
Zurück zum Zitat Rahim, S. S., Jayne, C., Palade, V., & Shuttleworth, J. (2016). Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Neural Computing and Applications, 27(5), 1149–1164.CrossRef Rahim, S. S., Jayne, C., Palade, V., & Shuttleworth, J. (2016). Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Neural Computing and Applications, 27(5), 1149–1164.CrossRef
59.
Zurück zum Zitat Rahim, S. S., Palade, V., Shuttleworth, J., Jayne, C., & Omar, R. N. (2015) Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In International conference on engineering applications of neural networks (pp. 69–79). Rahim, S. S., Palade, V., Shuttleworth, J., Jayne, C., & Omar, R. N. (2015) Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In International conference on engineering applications of neural networks (pp. 69–79).
60.
Zurück zum Zitat Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J (2015) Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In International Conference on Brain Informatics and Health (pp. 379–388) Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J (2015) Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In International Conference on Brain Informatics and Health (pp. 379–388)
61.
Zurück zum Zitat Yadav, S. K., Kumar, S., Kumar, B., & Gupta, R. (2016) Comparative analysis of fundus image enhancement in detection of diabetic retinopathy. In 2016 IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 1–5). Yadav, S. K., Kumar, S., Kumar, B., & Gupta, R. (2016) Comparative analysis of fundus image enhancement in detection of diabetic retinopathy. In 2016 IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 1–5).
63.
Zurück zum Zitat Kim, T., & Paik, J. (2008). Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Transactions on Consumer Electronics, 54(4), 1803–1810.CrossRef Kim, T., & Paik, J. (2008). Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Transactions on Consumer Electronics, 54(4), 1803–1810.CrossRef
64.
Zurück zum Zitat Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.CrossRef Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.CrossRef
65.
Zurück zum Zitat Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and video Technology, 38(1), 35–44.CrossRef Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and video Technology, 38(1), 35–44.CrossRef
66.
Zurück zum Zitat Dash, J., & Bhoi, N. (2018). Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. In 2018 2nd international conference on inventive systems and control (ICISC) (pp. 933–937). Dash, J., & Bhoi, N. (2018). Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. In 2018 2nd international conference on inventive systems and control (ICISC) (pp. 933–937).
67.
Zurück zum Zitat dos Santos, J. C., Carrijo, G. A., dos Santos Cardoso, C. D., Ferreira, J. C., Sousa, P. M., & Patrocínio, A. C. (2020). Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 36, 1–3. dos Santos, J. C., Carrijo, G. A., dos Santos Cardoso, C. D., Ferreira, J. C., Sousa, P. M., & Patrocínio, A. C. (2020). Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 36, 1–3.
68.
Zurück zum Zitat Sim, K. S., Tso, C. P., & Tan, Y. Y. (2007). Recursive sub-image histogram equalization applied to Gray scale images. Pattern Recognition Letters, 28(10), 1209–1221.CrossRef Sim, K. S., Tso, C. P., & Tan, Y. Y. (2007). Recursive sub-image histogram equalization applied to Gray scale images. Pattern Recognition Letters, 28(10), 1209–1221.CrossRef
69.
Zurück zum Zitat Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.CrossRef Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.CrossRef
70.
Zurück zum Zitat Singh, K., & Kapoor, R. (2014). Image enhancement using Exposure based Sub Image Histogram Equalization. Pattern Recognition Letters, 36(15), 10–14.CrossRef Singh, K., & Kapoor, R. (2014). Image enhancement using Exposure based Sub Image Histogram Equalization. Pattern Recognition Letters, 36(15), 10–14.CrossRef
71.
Zurück zum Zitat Costa, L. D., & Cesar Jr, R. M. (2000). Shape analysis and classification: Theory and practice. CRC Press. Costa, L. D., & Cesar Jr, R. M. (2000). Shape analysis and classification: Theory and practice. CRC Press.
72.
Zurück zum Zitat Kwan, H. K. (2003). Fuzzy filters for noisy image filtering. In Proceedings of the 2003 international symposium on circuits and systems, 2003. ISCAS'03 (Vol. 4, pp. IV-IV). Kwan, H. K. (2003). Fuzzy filters for noisy image filtering. In Proceedings of the 2003 international symposium on circuits and systems, 2003. ISCAS'03 (Vol. 4, pp. IV-IV).
73.
Zurück zum Zitat Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2002). Digital image processing (2nd ed.). Prentice Hall. Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2002). Digital image processing (2nd ed.). Prentice Hall.
74.
Zurück zum Zitat Orlando, J. I., Prokofyeva, E., Del Fresno, M., & Blaschko, M. B. (2018). An ensemble deep learning based approach for red lesion detection in fundus images. Computer Methods and Programs in Biomedicine, 153, 115–127.CrossRef Orlando, J. I., Prokofyeva, E., Del Fresno, M., & Blaschko, M. B. (2018). An ensemble deep learning based approach for red lesion detection in fundus images. Computer Methods and Programs in Biomedicine, 153, 115–127.CrossRef
75.
Zurück zum Zitat Toh, K. K., & Isa, N. A. (2009). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284.CrossRef Toh, K. K., & Isa, N. A. (2009). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284.CrossRef
76.
Zurück zum Zitat Kumari, V. V., & Suriyanarayanan, N. (2010). Blood vessel extraction using wiener filter and morphological operation. International Journal of Computer Science & Emerging Technologies, 1(4), 7–10. Kumari, V. V., & Suriyanarayanan, N. (2010). Blood vessel extraction using wiener filter and morphological operation. International Journal of Computer Science & Emerging Technologies, 1(4), 7–10.
77.
Zurück zum Zitat Gao, Z. (2018). An adaptive median filtering of salt and pepper noise based on local pixel distribution. In The 2018 International Conference on Transportation & Logistics, Information & Communication, Smart City (TLICSC 2018). Gao, Z. (2018). An adaptive median filtering of salt and pepper noise based on local pixel distribution. In The 2018 International Conference on Transportation & Logistics, Information & Communication, Smart City (TLICSC 2018).
78.
Zurück zum Zitat Ha, R., Liu, P., & Jia, K. (2017). An improved adaptive median filter algorithm and its application. In Advances in intelligent information hiding and multimedia signal processing (pp. 179–186). Ha, R., Liu, P., & Jia, K. (2017). An improved adaptive median filter algorithm and its application. In Advances in intelligent information hiding and multimedia signal processing (pp. 179–186).
79.
Zurück zum Zitat Tang, J., Wang, Y., Cao, W., & Yang, J. (2019). Improved adaptive median filtering for structured light image denoising. In 2019 7th international conference on information, communication and networks (ICICN) (pp. 146–149). Tang, J., Wang, Y., Cao, W., & Yang, J. (2019). Improved adaptive median filtering for structured light image denoising. In 2019 7th international conference on information, communication and networks (ICICN) (pp. 146–149).
81.
Zurück zum Zitat Shinde, K., & Kulkarni, S. (2020). Business oriented enhancement model for diabetic retinopathy detection. In International Conference on Business Management, Innovation & Sustainability (ICBMIS). Shinde, K., & Kulkarni, S. (2020). Business oriented enhancement model for diabetic retinopathy detection. In International Conference on Business Management, Innovation & Sustainability (ICBMIS).
82.
Zurück zum Zitat Lestari, T., & Luthfi, A. (2019). Retinal blood vessel segmentation using gaussian filter. Journal of Physics: Conference Series, 1376(1), 012023. Lestari, T., & Luthfi, A. (2019). Retinal blood vessel segmentation using gaussian filter. Journal of Physics: Conference Series, 1376(1), 012023.
83.
Zurück zum Zitat Shojaeipour, A., Nordin, M. J., & Hadavi, N. (2014). Using image processing methods for diagnosis diabetic retinopathy. In 2014 IEEE international symposium on robotics and manufacturing automation (ROMA) (pp. 154–159). Shojaeipour, A., Nordin, M. J., & Hadavi, N. (2014). Using image processing methods for diagnosis diabetic retinopathy. In 2014 IEEE international symposium on robotics and manufacturing automation (ROMA) (pp. 154–159).
85.
Zurück zum Zitat Prasad, D. K., Vibha, L., & Venugopal, K. R. (2015). Early detection of diabetic retinopathy from digital retinal fundus images. In 2015 IEEE recent advances in intelligent computational systems (RAICS) (pp. 240–245). Prasad, D. K., Vibha, L., & Venugopal, K. R. (2015). Early detection of diabetic retinopathy from digital retinal fundus images. In 2015 IEEE recent advances in intelligent computational systems (RAICS) (pp. 240–245).
86.
Zurück zum Zitat Welikala, R. A., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., & Barman, S. A. (2014). Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Computer Methods and Programs in Biomedicine, 114(3), 247–261.CrossRef Welikala, R. A., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T. H., & Barman, S. A. (2014). Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Computer Methods and Programs in Biomedicine, 114(3), 247–261.CrossRef
87.
Zurück zum Zitat Akram, M. U., Khalid, S., & Khan, S. A. (2013). Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognition, 46(1), 107–116.CrossRef Akram, M. U., Khalid, S., & Khan, S. A. (2013). Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognition, 46(1), 107–116.CrossRef
88.
Zurück zum Zitat Singh, N., & Tripathi, R. C. (2010). Automated early detection of diabetic retinopathy using image analysis techniques. International Journal of Computer Applications, 8(2), 18–23.CrossRef Singh, N., & Tripathi, R. C. (2010). Automated early detection of diabetic retinopathy using image analysis techniques. International Journal of Computer Applications, 8(2), 18–23.CrossRef
89.
Zurück zum Zitat Fadzil, M. H., Ngah, N. F., George, T. M., Izhar, L. I., Nugroho, H., & Nugroho, H. A. (2010). Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. In 2010 annual international conference of the IEEE engineering in medicine and biology (pp. 5632–5635). Fadzil, M. H., Ngah, N. F., George, T. M., Izhar, L. I., Nugroho, H., & Nugroho, H. A. (2010). Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. In 2010 annual international conference of the IEEE engineering in medicine and biology (pp. 5632–5635).
90.
Zurück zum Zitat Son, J., Shin, J. Y., Kim, H. D., Jung, K. H., Park, K. H., & Park, S. J. (2020). Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology, 127(1), 85–94.CrossRef Son, J., Shin, J. Y., Kim, H. D., Jung, K. H., Park, K. H., & Park, S. J. (2020). Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology, 127(1), 85–94.CrossRef
91.
Zurück zum Zitat Yang, Y., Li, T., Li, W., Wu, H., Fan, W., & Zhang, W. (2017). Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In International conference on medical image computing and computer-assisted intervention (pp. 533–540). Yang, Y., Li, T., Li, W., Wu, H., Fan, W., & Zhang, W. (2017). Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In International conference on medical image computing and computer-assisted intervention (pp. 533–540).
92.
Zurück zum Zitat Kusakunniran, W., Wu, Q., Ritthipravat, P., & Zhang, J. (2018). Hard exudates segmentation based on learned initial seeds and iterative graph cut. Computer Methods and Programs in Biomedicine, 158, 173–183.CrossRef Kusakunniran, W., Wu, Q., Ritthipravat, P., & Zhang, J. (2018). Hard exudates segmentation based on learned initial seeds and iterative graph cut. Computer Methods and Programs in Biomedicine, 158, 173–183.CrossRef
93.
Zurück zum Zitat Mo, J., & Zhang, L. (2017). Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 12(12), 2181–2193.CrossRef Mo, J., & Zhang, L. (2017). Multi-level deep supervised networks for retinal vessel segmentation. International Journal of Computer Assisted Radiology and Surgery, 12(12), 2181–2193.CrossRef
94.
Zurück zum Zitat Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., & Yang, G. (2015). Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149, 708–717.CrossRef Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., & Yang, G. (2015). Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149, 708–717.CrossRef
95.
Zurück zum Zitat Abràmoff, M. D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J. C., & Niemeijer, M. (2016). Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Ophthalmology & Visual Science, 57(13), 5200–5206.CrossRef Abràmoff, M. D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J. C., & Niemeijer, M. (2016). Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Ophthalmology & Visual Science, 57(13), 5200–5206.CrossRef
96.
Zurück zum Zitat Gegundez-Arias, M. E., Marin, D., Ponte, B., Alvarez, F., Garrido, J., Ortega, C., Vasallo, M. J., & Bravo, J. M. (2017). A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Computers in Biology and Medicine, 88, 100–109.CrossRef Gegundez-Arias, M. E., Marin, D., Ponte, B., Alvarez, F., Garrido, J., Ortega, C., Vasallo, M. J., & Bravo, J. M. (2017). A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Computers in Biology and Medicine, 88, 100–109.CrossRef
97.
Zurück zum Zitat Arunkumar, R., & Karthigaikumar, P. (2017). Multi-retinal disease classification by reduced deep learning features. Neural Computing and Applications, 28(2), 329–334.CrossRef Arunkumar, R., & Karthigaikumar, P. (2017). Multi-retinal disease classification by reduced deep learning features. Neural Computing and Applications, 28(2), 329–334.CrossRef
98.
Zurück zum Zitat Prentasic, P., & Loncaric, S. (2014). Weighted ensemble based automatic detection of exudates in fundus photographs. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 138–141). Prentasic, P., & Loncaric, S. (2014). Weighted ensemble based automatic detection of exudates in fundus photographs. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 138–141).
99.
Zurück zum Zitat Kaur, J., & Mittal, D. (2017). A generalized method for the detection of vascular structure in pathological retinal images. Biocybernetics and Biomedical Engineering, 37(1), 184–200.CrossRef Kaur, J., & Mittal, D. (2017). A generalized method for the detection of vascular structure in pathological retinal images. Biocybernetics and Biomedical Engineering, 37(1), 184–200.CrossRef
100.
Zurück zum Zitat Sahu, S., Singh, A. K., Ghrera, S. P., & Elhoseny, M. (2019). An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology, 110, 87–98.CrossRef Sahu, S., Singh, A. K., Ghrera, S. P., & Elhoseny, M. (2019). An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology, 110, 87–98.CrossRef
101.
Zurück zum Zitat Leopold, H. A., Orchard, J., Zelek, J. S., & Lakshminarayanan, V. (2019). PixelBNN: Augmenting the PixelCNN with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. Journal of Imaging, 5(2), 26.CrossRef Leopold, H. A., Orchard, J., Zelek, J. S., & Lakshminarayanan, V. (2019). PixelBNN: Augmenting the PixelCNN with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. Journal of Imaging, 5(2), 26.CrossRef
102.
Zurück zum Zitat Mahapatra, D., Bozorgtabar, B., & Garnavi, R. (2019). Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical Imaging and Graphics, 71, 30–39.CrossRef Mahapatra, D., Bozorgtabar, B., & Garnavi, R. (2019). Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical Imaging and Graphics, 71, 30–39.CrossRef
103.
Zurück zum Zitat Wang, X., Jiang, X., & Ren, J. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341.CrossRef Wang, X., Jiang, X., & Ren, J. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341.CrossRef
104.
Zurück zum Zitat Fan, Z., Lu, J., Wei, C., Huang, H., Cai, X., & Chen, X. (2018). A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Transactions on Image Processing, 28(5), 2367–2377.MathSciNetCrossRef Fan, Z., Lu, J., Wei, C., Huang, H., Cai, X., & Chen, X. (2018). A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Transactions on Image Processing, 28(5), 2367–2377.MathSciNetCrossRef
105.
Zurück zum Zitat Bandara, A. M., & Giragama, P. W. (2017). A retinal image enhancement technique for blood vessel segmentation algorithm. In 2017 IEEE international conference on industrial and information systems (ICIIS) (pp. 1–5). Bandara, A. M., & Giragama, P. W. (2017). A retinal image enhancement technique for blood vessel segmentation algorithm. In 2017 IEEE international conference on industrial and information systems (ICIIS) (pp. 1–5).
106.
Zurück zum Zitat Adal, K. M., Van Etten, P. G., Martinez, J. P., Rouwen, K. W., Vermeer, K. A., & van Vliet, L. J. (2017). An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Transactions on Biomedical Engineering, 65(6), 1382–1390.CrossRef Adal, K. M., Van Etten, P. G., Martinez, J. P., Rouwen, K. W., Vermeer, K. A., & van Vliet, L. J. (2017). An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Transactions on Biomedical Engineering, 65(6), 1382–1390.CrossRef
107.
Zurück zum Zitat Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abràmoff, M., Mendonça, A. M., & Campilho, A. (2017). End-to-end adversarial retinal image synthesis. IEEE Transactions on Medical Imaging, 37(3), 781–791.CrossRef Costa, P., Galdran, A., Meyer, M. I., Niemeijer, M., Abràmoff, M., Mendonça, A. M., & Campilho, A. (2017). End-to-end adversarial retinal image synthesis. IEEE Transactions on Medical Imaging, 37(3), 781–791.CrossRef
108.
Zurück zum Zitat Maninis, K. K., Pont-Tuset, J., Arbeláez, P., & Van Gool, L. (2016). Deep retinal image understanding. In International conference on medical image computing and computer-assisted intervention (pp. 140–148). Maninis, K. K., Pont-Tuset, J., Arbeláez, P., & Van Gool, L. (2016). Deep retinal image understanding. In International conference on medical image computing and computer-assisted intervention (pp. 140–148).
109.
Zurück zum Zitat Tennakoon, R., Mahapatra, D., Roy, P., Sedai, S., & Garnavi, R. (2016). Image quality classification for DR screening using convolutional neural networks. Tennakoon, R., Mahapatra, D., Roy, P., Sedai, S., & Garnavi, R. (2016). Image quality classification for DR screening using convolutional neural networks.
110.
Zurück zum Zitat Lahiri, A., Roy, A. G., Sheet, D., & Biswas, P. K. (2016). Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) 2016 Aug 16 (pp. 1340–1343). Lahiri, A., Roy, A. G., Sheet, D., & Biswas, P. K. (2016). Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) 2016 Aug 16 (pp. 1340–1343).
111.
Zurück zum Zitat Akram, M. U., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161–171.CrossRef Akram, M. U., Khalid, S., Tariq, A., Khan, S. A., & Azam, F. (2014). Detection and classification of retinal lesions for grading of diabetic retinopathy. Computers in Biology and Medicine, 45, 161–171.CrossRef
112.
Zurück zum Zitat Tu, W., Hu, W., Liu, X., & He, J. (2019). DRPAN: A novel adversarial network approach for retinal vessel segmentation. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 228–232). Tu, W., Hu, W., Liu, X., & He, J. (2019). DRPAN: A novel adversarial network approach for retinal vessel segmentation. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 228–232).
113.
Zurück zum Zitat Hemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707–721.CrossRef Hemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707–721.CrossRef
114.
Zurück zum Zitat Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185–192.CrossRef Chudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185–192.CrossRef
115.
Zurück zum Zitat Bui, T., Maneerat, N., & Watchareeruetai, U. (2017). Detection of cotton wool for diabetic retinopathy analysis using neural network. In 2017 IEEE 10th international workshop on computational intelligence and applications (IWCIA) (pp. 203–206). Bui, T., Maneerat, N., & Watchareeruetai, U. (2017). Detection of cotton wool for diabetic retinopathy analysis using neural network. In 2017 IEEE 10th international workshop on computational intelligence and applications (IWCIA) (pp. 203–206).
116.
Zurück zum Zitat Nijalingappa, P., & Sandeep, B. (2015). Machine learning approach for the identification of diabetes retinopathy and its stages. In 2015 international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 653–658). Nijalingappa, P., & Sandeep, B. (2015). Machine learning approach for the identification of diabetes retinopathy and its stages. In 2015 international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 653–658).
117.
Zurück zum Zitat Paing, M. P., Choomchuay, S., & Yodprom, M. R. (2016). Detection of lesions and classification of diabetic retinopathy using fundus images. In 2016 9th Biomedical engineering international conference (BMEiCON) (pp. 1–5). Paing, M. P., Choomchuay, S., & Yodprom, M. R. (2016). Detection of lesions and classification of diabetic retinopathy using fundus images. In 2016 9th Biomedical engineering international conference (BMEiCON) (pp. 1–5).
118.
Zurück zum Zitat Wang, H., Yuan, G., Zhao, X., Peng, L., Wang, Z., He, Y., Qu, C., & Peng, Z. (2020). Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Computer Methods and Programs in Biomedicine, 191, 105398.CrossRef Wang, H., Yuan, G., Zhao, X., Peng, L., Wang, Z., He, Y., Qu, C., & Peng, Z. (2020). Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Computer Methods and Programs in Biomedicine, 191, 105398.CrossRef
119.
Zurück zum Zitat Khalaf, A. F., Yassine, I. A., & Fahmy, A. S. (2016). Convolutional neural networks for deep feature learning in retinal vessel segmentation. In 2016 IEEE international conference on image processing (ICIP) (pp. 385–388). Khalaf, A. F., Yassine, I. A., & Fahmy, A. S. (2016). Convolutional neural networks for deep feature learning in retinal vessel segmentation. In 2016 IEEE international conference on image processing (ICIP) (pp. 385–388).
120.
Zurück zum Zitat Luo, Y., Cheng, H., & Yang, L. (2016). Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–7). Luo, Y., Cheng, H., & Yang, L. (2016). Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–7).
121.
Zurück zum Zitat Fan, Z., & Mo, J. J. (2016) Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In 2016 International conference on machine learning and cybernetics (ICMLC) (Vol. 2, pp. 849–856). Fan, Z., & Mo, J. J. (2016) Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In 2016 International conference on machine learning and cybernetics (ICMLC) (Vol. 2, pp. 849–856).
122.
Zurück zum Zitat Zhang, Y. J. (1997). Evaluation and comparison of different segmentation algorithms. Pattern Recognition Letters, 18(10), 963–974.CrossRef Zhang, Y. J. (1997). Evaluation and comparison of different segmentation algorithms. Pattern Recognition Letters, 18(10), 963–974.CrossRef
123.
Zurück zum Zitat Hua, C. H., Huynh-The, T., & Lee, S. (2019). Retinal vessel segmentation using round-wise features aggregation on bracket-shaped convolutional neural networks. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 36–39). Hua, C. H., Huynh-The, T., & Lee, S. (2019). Retinal vessel segmentation using round-wise features aggregation on bracket-shaped convolutional neural networks. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 36–39).
124.
Zurück zum Zitat Fu, Q., Li, S., & Wang, X. (2020). MSCNN-AM: A multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access, 8, 163926–163936.CrossRef Fu, Q., Li, S., & Wang, X. (2020). MSCNN-AM: A multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access, 8, 163926–163936.CrossRef
125.
Zurück zum Zitat Oliveira, A., Pereira, S., & Silva, C. A. (2018). Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications, 112, 229–242.CrossRef Oliveira, A., Pereira, S., & Silva, C. A. (2018). Retinal vessel segmentation based on fully convolutional neural networks. Expert Systems with Applications, 112, 229–242.CrossRef
126.
Zurück zum Zitat Jiang, Z., Zhang, H., Wang, Y., & Ko, S. B. (2018). Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68, 1–5.CrossRef Jiang, Z., Zhang, H., Wang, Y., & Ko, S. B. (2018). Retinal blood vessel segmentation using fully convolutional network with transfer learning. Computerized Medical Imaging and Graphics, 68, 1–5.CrossRef
127.
Zurück zum Zitat Soomro, T. A., Afifi, A. J., Gao, J., Hellwich, O., Zheng, L., & Paul, M. (2019). Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems with Applications, 134, 36–52.CrossRef Soomro, T. A., Afifi, A. J., Gao, J., Hellwich, O., Zheng, L., & Paul, M. (2019). Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Systems with Applications, 134, 36–52.CrossRef
128.
Zurück zum Zitat Dasgupta, A, & Singh, S. (2017). A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) (pp. 248–251). Dasgupta, A, & Singh, S. (2017). A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) (pp. 248–251).
129.
Zurück zum Zitat Li, W. et al. (2020). Fundus retinal blood vessel segmentation based on active learning. In 2020 International conference on computer information and big data applications (CIBDA) (pp. 264–268). Li, W. et al. (2020). Fundus retinal blood vessel segmentation based on active learning. In 2020 International conference on computer information and big data applications (CIBDA) (pp. 264–268).
130.
Zurück zum Zitat Atli, İ, & Gedik, O. S. (2021). Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 24(2), 271–283.CrossRef Atli, İ, & Gedik, O. S. (2021). Sine-Net: A fully convolutional deep learning architecture for retinal blood vessel segmentation. Engineering Science and Technology, an International Journal, 24(2), 271–283.CrossRef
131.
Zurück zum Zitat Guo, C., Szemenyei, M., Pei, Y., Yi, Y., & Zhou, W. (2019). SD-UNet: A structured dropout U-Net for retinal vessel segmentation. In 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE) (pp. 439–444). Guo, C., Szemenyei, M., Pei, Y., Yi, Y., & Zhou, W. (2019). SD-UNet: A structured dropout U-Net for retinal vessel segmentation. In 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE) (pp. 439–444).
132.
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241).
133.
Zurück zum Zitat Prabha, D. S., & Kumar, J. S. (2016). Performance evaluation of image segmentation using objective methods. Indian Journal of Science and Technology, 9(8), 1–8.CrossRef Prabha, D. S., & Kumar, J. S. (2016). Performance evaluation of image segmentation using objective methods. Indian Journal of Science and Technology, 9(8), 1–8.CrossRef
134.
Zurück zum Zitat Prabha, D. S., & Kumar, J. S. (2013). Three dimensional object detection and classification methods: A study. International Journal of Engineering, Science and Technology, 2(2), 33–42. Prabha, D. S., & Kumar, J. S. (2013). Three dimensional object detection and classification methods: A study. International Journal of Engineering, Science and Technology, 2(2), 33–42.
135.
Zurück zum Zitat Ayhan, M.S., & Berens, P. (2018). Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. Ayhan, M.S., & Berens, P. (2018). Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks.
136.
Zurück zum Zitat Laibacher, T., Weyde, T., & Jalali, S. (2019), M2u-net: Effective and efficient retinal vessel segmentation for real-world applications. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 0–0). Laibacher, T., Weyde, T., & Jalali, S. (2019), M2u-net: Effective and efficient retinal vessel segmentation for real-world applications. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 0–0).
137.
Zurück zum Zitat Jin, Q., Meng, Z., Pham, T. D., Chen, Q., Wei, L., & Su, R. (2019). DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178, 149–162.CrossRef Jin, Q., Meng, Z., Pham, T. D., Chen, Q., Wei, L., & Su, R. (2019). DUNet: A deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178, 149–162.CrossRef
138.
Zurück zum Zitat Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 764–773). Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 764–773).
139.
Zurück zum Zitat Wang, D., Hu, G., & Lyu, C. (2021). Frnet: An end-to-end feature refinement neural network for medical image segmentation. The Visual Computer, 37, 1101–1112.CrossRef Wang, D., Hu, G., & Lyu, C. (2021). Frnet: An end-to-end feature refinement neural network for medical image segmentation. The Visual Computer, 37, 1101–1112.CrossRef
140.
Zurück zum Zitat Vengalil, S. K., Sinha, N., Kruthiventi, S. S., Babu, R. V. (2016). Customizing CNNs for blood vessel segmentation from fundus images. In 2016 International conference on signal processing and communications (SPCOM) (pp. 1–4). Vengalil, S. K., Sinha, N., Kruthiventi, S. S., Babu, R. V. (2016). Customizing CNNs for blood vessel segmentation from fundus images. In 2016 International conference on signal processing and communications (SPCOM) (pp. 1–4).
141.
Zurück zum Zitat Yin, P., Yuan, R., Cheng, Y., & Wu, Q. (2020). Deep guidance network for biomedical image segmentation. IEEE Access, 8, 116106–116116.CrossRef Yin, P., Yuan, R., Cheng, Y., & Wu, Q. (2020). Deep guidance network for biomedical image segmentation. IEEE Access, 8, 116106–116116.CrossRef
142.
Zurück zum Zitat Dharmawan, D. A., Li, D., Ng, B. P., & Rahardja, S. (2019). A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access, 7, 41885–41896.CrossRef Dharmawan, D. A., Li, D., Ng, B. P., & Rahardja, S. (2019). A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access, 7, 41885–41896.CrossRef
143.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
144.
Zurück zum Zitat Xiuqin, P., Zhang, Q., Zhang, H., & Li, S. (2019). A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access, 7, 122634–122643.CrossRef Xiuqin, P., Zhang, Q., Zhang, H., & Li, S. (2019). A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access, 7, 122634–122643.CrossRef
145.
Zurück zum Zitat Li, D., Dharmawan, D. A., Ng, B. P., & Rahardja, S. (2019). Residual u-net for retinal vessel segmentation. In 2019 IEEE international conference on image processing (ICIP) (pp. 1425–1429). Li, D., Dharmawan, D. A., Ng, B. P., & Rahardja, S. (2019). Residual u-net for retinal vessel segmentation. In 2019 IEEE international conference on image processing (ICIP) (pp. 1425–1429).
146.
Zurück zum Zitat Khan, T. M., Alhussein, M., Aurangzeb, K., Arsalan, M., Naqvi, S. S., & Nawaz, S. J. (2020). Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation. IEEE Access, 8, 131257–131272.CrossRef Khan, T. M., Alhussein, M., Aurangzeb, K., Arsalan, M., Naqvi, S. S., & Nawaz, S. J. (2020). Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation. IEEE Access, 8, 131257–131272.CrossRef
147.
Zurück zum Zitat Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., & Yi, Y. (2021). Channel attention residual U-net for retinal vessel segmentation. In ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1185–1189). Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., & Yi, Y. (2021). Channel attention residual U-net for retinal vessel segmentation. In ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1185–1189).
148.
Zurück zum Zitat Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., & Liu, J. (2019). Dense dilated network with probability regularized walk for vessel detection. IEEE Transactions on Medical Imaging, 39(5), 1392–1403.CrossRef Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., & Liu, J. (2019). Dense dilated network with probability regularized walk for vessel detection. IEEE Transactions on Medical Imaging, 39(5), 1392–1403.CrossRef
149.
Zurück zum Zitat Adarsh, R., Amarnageswarao, G., Pandeeswari, R., & Deivalakshmi, S. (2020). Dense residual convolutional auto encoder for retinal blood vessels segmentation. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 280–284). Adarsh, R., Amarnageswarao, G., Pandeeswari, R., & Deivalakshmi, S. (2020). Dense residual convolutional auto encoder for retinal blood vessels segmentation. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 280–284).
150.
Zurück zum Zitat Lopes, A. P., Ribeiro, A., & Silva, C. A. (2019). Dilated convolutions in retinal blood vessels segmentation. In 2019 IEEE 6th Portuguese meeting on bioengineering (ENBENG) (pp. 1–4). Lopes, A. P., Ribeiro, A., & Silva, C. A. (2019). Dilated convolutions in retinal blood vessels segmentation. In 2019 IEEE 6th Portuguese meeting on bioengineering (ENBENG) (pp. 1–4).
151.
Zurück zum Zitat Jiang, Y., Tan, N., Peng, T., & Zhang, H. (2019). Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access, 7, 76342–76352.CrossRef Jiang, Y., Tan, N., Peng, T., & Zhang, H. (2019). Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access, 7, 76342–76352.CrossRef
152.
Zurück zum Zitat Soomro, T. A., Afifi, A. J., Shah, A. A., Soomro, S., Baloch, G. A., Zheng, L., Yin, M., & Gao, J. (2019). Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access, 7, 158183–158197.CrossRef Soomro, T. A., Afifi, A. J., Shah, A. A., Soomro, S., Baloch, G. A., Zheng, L., Yin, M., & Gao, J. (2019). Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access, 7, 158183–158197.CrossRef
153.
Zurück zum Zitat Biswas, R., Vasan, A., & Roy, S. S. (2020). Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), 505–518.CrossRef Biswas, R., Vasan, A., & Roy, S. S. (2020). Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), 505–518.CrossRef
154.
Zurück zum Zitat Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008). Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).
155.
Zurück zum Zitat Lv, Y., Ma, H., Li, J., & Liu, S. (2020). Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access, 8, 32826–32839.CrossRef Lv, Y., Ma, H., Li, J., & Liu, S. (2020). Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access, 8, 32826–32839.CrossRef
156.
Zurück zum Zitat Yan, Z., Yang, X., & Cheng, K. T. (2018). Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9), 1912–1923.CrossRef Yan, Z., Yang, X., & Cheng, K. T. (2018). Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9), 1912–1923.CrossRef
157.
Zurück zum Zitat Samanta, S., Ahmed, S. S., Salem, M. A., Nath, S. S., Dey, N., & Chowdhury, S. S. (2014). Haralick features based automated glaucoma classification using back propagation neural network. In Proceedings of the 3rd international conference on frontiers of intelligent computing: Theory and applications (FICTA) (pp. 351–358). Samanta, S., Ahmed, S. S., Salem, M. A., Nath, S. S., Dey, N., & Chowdhury, S. S. (2014). Haralick features based automated glaucoma classification using back propagation neural network. In Proceedings of the 3rd international conference on frontiers of intelligent computing: Theory and applications (FICTA) (pp. 351–358).
158.
Zurück zum Zitat Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A. M., & Campilho, A. (2018). A no-reference quality metric for retinal vessel tree segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 82–90). Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A. M., & Campilho, A. (2018). A no-reference quality metric for retinal vessel tree segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 82–90).
159.
Zurück zum Zitat Alvarado-Carrillo, D. E., Ovalle-Magallanes, E., & Dalmau-Cedeño, O. S. (2021). D-GaussianNet: Adaptive distorted Gaussian matched filter with convolutional neural network for retinal vessel segmentation. Geometry and Vision, 1386, 378.CrossRef Alvarado-Carrillo, D. E., Ovalle-Magallanes, E., & Dalmau-Cedeño, O. S. (2021). D-GaussianNet: Adaptive distorted Gaussian matched filter with convolutional neural network for retinal vessel segmentation. Geometry and Vision, 1386, 378.CrossRef
160.
Zurück zum Zitat Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., & Qin, J. (2021). SCS-Net: A scale and context sensitive network for retinal vessel segmentation. Medical Image Analysis, 70, 102025.CrossRef Wu, H., Wang, W., Zhong, J., Lei, B., Wen, Z., & Qin, J. (2021). SCS-Net: A scale and context sensitive network for retinal vessel segmentation. Medical Image Analysis, 70, 102025.CrossRef
161.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems 27. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems 27.
162.
Zurück zum Zitat Wu, C., Zou, Y., & Yang, Z. (2019). U-GAN: Generative adversarial networks with U-net for retinal vessel segmentation. In 2019 14th international conference on computer science & education (ICCSE) (pp. 642–646). Wu, C., Zou, Y., & Yang, Z. (2019). U-GAN: Generative adversarial networks with U-net for retinal vessel segmentation. In 2019 14th international conference on computer science & education (ICCSE) (pp. 642–646).
163.
Zurück zum Zitat Ma, J., Wei, M., Ma, Z., Shi, L., & Zhu, K. (2019). Retinal vessel segmentation based on generative adversarial network and dilated convolution. In 2019 14th international conference on computer science & education (ICCSE) (pp. 282–287). Ma, J., Wei, M., Ma, Z., Shi, L., & Zhu, K. (2019). Retinal vessel segmentation based on generative adversarial network and dilated convolution. In 2019 14th international conference on computer science & education (ICCSE) (pp. 282–287).
164.
Zurück zum Zitat Zhou, Y., Chen, Z., Shen, H., Zheng, X., Zhao, R., & Duan, X. (2021). A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 437, 118–130.CrossRef Zhou, Y., Chen, Z., Shen, H., Zheng, X., Zhao, R., & Duan, X. (2021). A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing, 437, 118–130.CrossRef
165.
Zurück zum Zitat Guo, X., Chen, C., Lu, Y., Meng, K., Chen, H., Zhou, K., Wang, Z., & Xiao, R. (2020). Retinal vessel segmentation combined with generative adversarial networks and dense U-net. IEEE Access, 8, 194551–194560.CrossRef Guo, X., Chen, C., Lu, Y., Meng, K., Chen, H., Zhou, K., Wang, Z., & Xiao, R. (2020). Retinal vessel segmentation combined with generative adversarial networks and dense U-net. IEEE Access, 8, 194551–194560.CrossRef
166.
Zurück zum Zitat Rammy, S. A., Anwar, S. J., Abrar, M., & Zhang, W. (2019). Conditional patch-based generative adversarial network for retinal vessel segmentation. In 2019 22nd international multitopic conference (INMIC) (pp. 1–6). Rammy, S. A., Anwar, S. J., Abrar, M., & Zhang, W. (2019). Conditional patch-based generative adversarial network for retinal vessel segmentation. In 2019 22nd international multitopic conference (INMIC) (pp. 1–6).
167.
Zurück zum Zitat Son, J., Park, S. J., & Jung, K. H. (2019). Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. Journal of Digital Imaging, 32(3), 499–512.CrossRef Son, J., Park, S. J., & Jung, K. H. (2019). Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. Journal of Digital Imaging, 32(3), 499–512.CrossRef
168.
Zurück zum Zitat Yang, T., Wu, T., Li, L., & Zhu, C. (2020). SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. Journal of Digital Imaging, 33(4), 946–957.CrossRef Yang, T., Wu, T., Li, L., & Zhu, C. (2020). SUD-GAN: Deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. Journal of Digital Imaging, 33(4), 946–957.CrossRef
169.
Zurück zum Zitat He, J., & Jiang, D. (2020). Fundus image segmentation based on improved generative adversarial network for retinal vessel analysis. In 2020 3rd international conference on artificial intelligence and big data (ICAIBD) (pp. 231–236). He, J., & Jiang, D. (2020). Fundus image segmentation based on improved generative adversarial network for retinal vessel analysis. In 2020 3rd international conference on artificial intelligence and big data (ICAIBD) (pp. 231–236).
170.
Zurück zum Zitat Park, K. B., Choi, S. H., & Lee, J. Y. (2020). M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access, 8, 146308–146322.CrossRef Park, K. B., Choi, S. H., & Lee, J. Y. (2020). M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access, 8, 146308–146322.CrossRef
171.
Zurück zum Zitat Huo, Q., Tang, G., & Zhang, F. (2019). Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In Machine learning and medical engineering for cardiovascular health and intravascular imaging and computer assisted stenting (pp. 112–120). Huo, Q., Tang, G., & Zhang, F. (2019). Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In Machine learning and medical engineering for cardiovascular health and intravascular imaging and computer assisted stenting (pp. 112–120).
172.
Zurück zum Zitat Kennedy, J., & Eberhart, R. (1995). IEEE, particle swarm optimization. In 1995 IEEE international conference on neural networks proceedings (Vols. 1–61995, p. 1948). Kennedy, J., & Eberhart, R. (1995). IEEE, particle swarm optimization. In 1995 IEEE international conference on neural networks proceedings (Vols. 1–61995, p. 1948).
173.
Zurück zum Zitat Lahiri, A., Jain, V., Mondal, A., & Biswas, P. K. (2020). Retinal vessel segmentation under extreme low annotation: A gan based semi-supervised approach. In 2020 IEEE international conference on image processing (ICIP) (pp. 418–422). Lahiri, A., Jain, V., Mondal, A., & Biswas, P. K. (2020). Retinal vessel segmentation under extreme low annotation: A gan based semi-supervised approach. In 2020 IEEE international conference on image processing (ICIP) (pp. 418–422).
174.
Zurück zum Zitat Liskowski, P., & Krawiec, K. (2016). Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11), 2369–2380.CrossRef Liskowski, P., & Krawiec, K. (2016). Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11), 2369–2380.CrossRef
175.
Zurück zum Zitat Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70–79.CrossRef Tan, J. H., Acharya, U. R., Bhandary, S. V., Chua, K. C., & Sivaprasad, S. (2017). Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science, 20, 70–79.CrossRef
176.
Zurück zum Zitat Guo, Y., Budak, Ü., Vespa, L. J., Khorasani, E., & Şengür, A. (2018). A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement, 125, 586–591.CrossRef Guo, Y., Budak, Ü., Vespa, L. J., Khorasani, E., & Şengür, A. (2018). A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement, 125, 586–591.CrossRef
177.
Zurück zum Zitat Zhang, Y., & Chung, A. C. (2018). Deep supervision with additional labels for retinal vessel segmentation task. In International conference on medical image computing and computer-assisted intervention (pp. 83–91). Zhang, Y., & Chung, A. C. (2018). Deep supervision with additional labels for retinal vessel segmentation task. In International conference on medical image computing and computer-assisted intervention (pp. 83–91).
178.
Zurück zum Zitat Lu, J., Xu, Y., Chen, M., & Luo, Y. (2018). A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry, 10(11), 607.CrossRef Lu, J., Xu, Y., Chen, M., & Luo, Y. (2018). A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry, 10(11), 607.CrossRef
179.
Zurück zum Zitat Dong, Y., Ren, W., & Zhang, K. (2019). Deep supervision adversarial learning network for retinal vessel segmentation. In 2019 12th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–6). Dong, Y., Ren, W., & Zhang, K. (2019). Deep supervision adversarial learning network for retinal vessel segmentation. In 2019 12th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–6).
180.
Zurück zum Zitat Mishra, S., Chen, D. Z., & Hu, X. S. (2020). A data-aware deep supervised method for retinal vessel segmentation. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1254–1257). Mishra, S., Chen, D. Z., & Hu, X. S. (2020). A data-aware deep supervised method for retinal vessel segmentation. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1254–1257).
181.
Zurück zum Zitat Tang, X., Zhong, B., Peng, J., Hao, B., & Li, J. (2020). Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing, 93, 106353.CrossRef Tang, X., Zhong, B., Peng, J., Hao, B., & Li, J. (2020). Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Applied Soft Computing, 93, 106353.CrossRef
182.
Zurück zum Zitat Nasery, V., Soundararajan, K. B., & Galeotti, J. (2020). Learning to segment vessels from poorly illuminated fundus images. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1232–1236). Nasery, V., Soundararajan, K. B., & Galeotti, J. (2020). Learning to segment vessels from poorly illuminated fundus images. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI) (pp. 1232–1236).
183.
Zurück zum Zitat Wang, D., Haytham, A., Pottenburgh, J., Saeedi, O., & Tao, Y. (2020). Hard attention net for automatic retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 24(12), 3384–3396.CrossRef Wang, D., Haytham, A., Pottenburgh, J., Saeedi, O., & Tao, Y. (2020). Hard attention net for automatic retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 24(12), 3384–3396.CrossRef
184.
Zurück zum Zitat Budak, Ü., Cömert, Z., Çıbuk, M., & Şengür, A. (2020). DCCMED-Net: densely connected and concatenated multi encoder-decoder CNNs for retinal vessel extraction from fundus images. Medical Hypotheses, 1(134), 109426.CrossRef Budak, Ü., Cömert, Z., Çıbuk, M., & Şengür, A. (2020). DCCMED-Net: densely connected and concatenated multi encoder-decoder CNNs for retinal vessel extraction from fundus images. Medical Hypotheses, 1(134), 109426.CrossRef
185.
Zurück zum Zitat Wu, Y., Xia, Y., Song, Y., Zhang, Y., & Cai, W. (2020). NFN+: A novel network followed network for retinal vessel segmentation. Neural Networks, 126, 153–162.CrossRef Wu, Y., Xia, Y., Song, Y., Zhang, Y., & Cai, W. (2020). NFN+: A novel network followed network for retinal vessel segmentation. Neural Networks, 126, 153–162.CrossRef
186.
Zurück zum Zitat Tian, C., Fang, T., Fan, Y., & Wu, W. (2020). Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernetics and Biomedical Engineering, 40(2), 583–595.CrossRef Tian, C., Fang, T., Fan, Y., & Wu, W. (2020). Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernetics and Biomedical Engineering, 40(2), 583–595.CrossRef
187.
Zurück zum Zitat Wang, B., Wang, S., Qiu, S., Wei, W., Wang, H., & He, H. (2020). CSU-Net: A context spatial U-net for accurate blood vessel segmentation in fundus images. IEEE Journal of Biomedical and Health Informatics, 25(4), 1128–1138.CrossRef Wang, B., Wang, S., Qiu, S., Wei, W., Wang, H., & He, H. (2020). CSU-Net: A context spatial U-net for accurate blood vessel segmentation in fundus images. IEEE Journal of Biomedical and Health Informatics, 25(4), 1128–1138.CrossRef
188.
Zurück zum Zitat Li, X., Jiang, Y., Li, M., & Yin, S. (2020). Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transactions on Industrial Informatics, 17(3), 1958–1967.CrossRef Li, X., Jiang, Y., Li, M., & Yin, S. (2020). Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transactions on Industrial Informatics, 17(3), 1958–1967.CrossRef
189.
Zurück zum Zitat Li, K., Qi, X., Luo, Y., Yao, Z., Zhou, X., & Sun, M. (2020). Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE Journal of Biomedical and Health Informatics, 25(6), 2071–2081.CrossRef Li, K., Qi, X., Luo, Y., Yao, Z., Zhou, X., & Sun, M. (2020). Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE Journal of Biomedical and Health Informatics, 25(6), 2071–2081.CrossRef
191.
Zurück zum Zitat Chakrabarti, R., Harper, C. A., & Keeffe, J. E. (2012). Diabetic retinopathy management guidelines. Expert Review of Ophthalmology, 7(5), 417–439.CrossRef Chakrabarti, R., Harper, C. A., & Keeffe, J. E. (2012). Diabetic retinopathy management guidelines. Expert Review of Ophthalmology, 7(5), 417–439.CrossRef
192.
Zurück zum Zitat Dubow, M., Pinhas, A., Shah, N., Cooper, R. F., Gan, A., Gentile, R. C., Hendrix, V., Sulai, Y. N., Carroll, J., Chui, T. Y., & Walsh, J. B. (2014). Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Investigative Ophthalmology & Visual Science, 55(3), 1299–1309.CrossRef Dubow, M., Pinhas, A., Shah, N., Cooper, R. F., Gan, A., Gentile, R. C., Hendrix, V., Sulai, Y. N., Carroll, J., Chui, T. Y., & Walsh, J. B. (2014). Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Investigative Ophthalmology & Visual Science, 55(3), 1299–1309.CrossRef
193.
Zurück zum Zitat Shan, J., & Li, L. (2016). A deep learning method for microaneurysm detection in fundus images. In 2016 IEEE first international conference on connected health: Applications, systems and engineering technologies (CHASE) (pp. 357–358). Shan, J., & Li, L. (2016). A deep learning method for microaneurysm detection in fundus images. In 2016 IEEE first international conference on connected health: Applications, systems and engineering technologies (CHASE) (pp. 357–358).
194.
Zurück zum Zitat Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., & Cheng, L. (2018). Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Transactions on Medical Imaging, 38(1), 46–56.CrossRef Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., & Cheng, L. (2018). Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Transactions on Medical Imaging, 38(1), 46–56.CrossRef
195.
Zurück zum Zitat Lam, C., Yu, C., Huang, L., & Rubin, D. (2018). Retinal lesion detection with deep learning using image patches. Investigative Ophthalmology & Visual Science, 59(1), 590–596.CrossRef Lam, C., Yu, C., Huang, L., & Rubin, D. (2018). Retinal lesion detection with deep learning using image patches. Investigative Ophthalmology & Visual Science, 59(1), 590–596.CrossRef
196.
Zurück zum Zitat Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Transactions on Medical Imaging, 35(5), 1273–1284.CrossRef Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Transactions on Medical Imaging, 35(5), 1273–1284.CrossRef
197.
Zurück zum Zitat Yan, Y., Gong, J., & Liu, Y. (2019). A novel deep learning method for red lesions detection using hybrid feature. In 2019 Chinese control and decision conference (CCDC) (pp. 2287–2292). Yan, Y., Gong, J., & Liu, Y. (2019). A novel deep learning method for red lesions detection using hybrid feature. In 2019 Chinese control and decision conference (CCDC) (pp. 2287–2292).
198.
Zurück zum Zitat Shah, A., Lynch, S., Niemeijer, M., Amelon, R., Clarida, W., Folk, J., Russell, S., Wu, X., & Abràmoff, M. D. (2018). Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1454–1457). Shah, A., Lynch, S., Niemeijer, M., Amelon, R., Clarida, W., Folk, J., Russell, S., Wu, X., & Abràmoff, M. D. (2018). Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1454–1457).
199.
Zurück zum Zitat Mateen, M., Wen, J., Song, S., & Huang, Z. (2019). Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry, 11(1), 1.CrossRef Mateen, M., Wen, J., Song, S., & Huang, Z. (2019). Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry, 11(1), 1.CrossRef
200.
Zurück zum Zitat Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. (2017). Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In 2017 IEEE international conference on image processing (ICIP) (pp. 2069–2073). Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. (2017). Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In 2017 IEEE international conference on image processing (ICIP) (pp. 2069–2073).
201.
Zurück zum Zitat Kwasigroch, A., Jarzembinski, B., & Grochowski, M. (2018). Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In 2018 International Interdisciplinary PhD Workshop (IIPhDW) (pp. 111–116). Kwasigroch, A., Jarzembinski, B., & Grochowski, M. (2018). Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In 2018 International Interdisciplinary PhD Workshop (IIPhDW) (pp. 111–116).
202.
Zurück zum Zitat Suriyal, S., Druzgalski, C., & Gautam, K. (2018). Mobile assisted diabetic retinopathy detection using deep neural network. In 2018 Global medical engineering physics exchanges/pan American Health Care Exchanges (GMEPE/PAHCE) (pp. 1–4). Suriyal, S., Druzgalski, C., & Gautam, K. (2018). Mobile assisted diabetic retinopathy detection using deep neural network. In 2018 Global medical engineering physics exchanges/pan American Health Care Exchanges (GMEPE/PAHCE) (pp. 1–4).
203.
Zurück zum Zitat Zago, G. T., Andreão, R. V., Dorizzi, B., & Salles, E. O. (2020). Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Computers in Biology and Medicine, 116, 103537.CrossRef Zago, G. T., Andreão, R. V., Dorizzi, B., & Salles, E. O. (2020). Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Computers in Biology and Medicine, 116, 103537.CrossRef
204.
Zurück zum Zitat Khojasteh, P., Júnior, L. A., Carvalho, T., Rezende, E., Aliahmad, B., Papa, J. P., & Kumar, D. K. (2019). Exudate detection in fundus images using deeply-learnable features. Computers in Biology and Medicine, 104, 62–69.CrossRef Khojasteh, P., Júnior, L. A., Carvalho, T., Rezende, E., Aliahmad, B., Papa, J. P., & Kumar, D. K. (2019). Exudate detection in fundus images using deeply-learnable features. Computers in Biology and Medicine, 104, 62–69.CrossRef
206.
Zurück zum Zitat Singh, R. K., & Gorantla, R. (2020). DMENet: Diabetic macular edema diagnosis using hierarchical ensemble of CNNs. PLoS ONE, 15(2), e0220677.CrossRef Singh, R. K., & Gorantla, R. (2020). DMENet: Diabetic macular edema diagnosis using hierarchical ensemble of CNNs. PLoS ONE, 15(2), e0220677.CrossRef
207.
Zurück zum Zitat Adem, K. (2018). Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Systems with Applications, 114, 289–295.CrossRef Adem, K. (2018). Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Systems with Applications, 114, 289–295.CrossRef
208.
Zurück zum Zitat Mo, J., Zhang, L., & Feng, Y. (2018). Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing, 290, 161–171.CrossRef Mo, J., Zhang, L., & Feng, Y. (2018). Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing, 290, 161–171.CrossRef
209.
Zurück zum Zitat Omar, M., Khelifi, F., & Tahir, M. A. (2016). Detection and classification of retinal fundus images exudates using region based multiscale LBP texture approach. In 2016 International conference on control, decision and information technologies (CoDIT) (pp. 227–232). Omar, M., Khelifi, F., & Tahir, M. A. (2016). Detection and classification of retinal fundus images exudates using region based multiscale LBP texture approach. In 2016 International conference on control, decision and information technologies (CoDIT) (pp. 227–232).
210.
Zurück zum Zitat Wu, L., Wan, C., Wu, Y., & Liu, J. (2017). Generative caption for diabetic retinopathy images. In 2017 International conference on security, pattern analysis, and cybernetics (SPAC) (pp. 515–519). Wu, L., Wan, C., Wu, Y., & Liu, J. (2017). Generative caption for diabetic retinopathy images. In 2017 International conference on security, pattern analysis, and cybernetics (SPAC) (pp. 515–519).
211.
Zurück zum Zitat Wang, J., Luo, J., Liu, B., Feng, R., Lu, L., & Zou, H. (2020). Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Computer Vision, 14(1), 1–8.CrossRef Wang, J., Luo, J., Liu, B., Feng, R., Lu, L., & Zou, H. (2020). Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Computer Vision, 14(1), 1–8.CrossRef
212.
Zurück zum Zitat Alghamdi, H. S., Tang, H. L., Waheeb, S. A., & Peto, T. (2016). Automatic optic disc abnormality detection in fundus images: A deep learning approach. Alghamdi, H. S., Tang, H. L., Waheeb, S. A., & Peto, T. (2016). Automatic optic disc abnormality detection in fundus images: A deep learning approach.
213.
Zurück zum Zitat Pekala, M., Joshi, N., Liu, T. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445.CrossRef Pekala, M., Joshi, N., Liu, T. A., Bressler, N. M., DeBuc, D. C., & Burlina, P. (2019). Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114, 103445.CrossRef
214.
Zurück zum Zitat Fu, H., Cheng, J., Xu, Y., Wong, D. W., Liu, J., & Cao, X. (2018). Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37(7), 1597–1605.CrossRef Fu, H., Cheng, J., Xu, Y., Wong, D. W., Liu, J., & Cao, X. (2018). Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging, 37(7), 1597–1605.CrossRef
215.
Zurück zum Zitat Wang, L., Liu, H., Lu, Y., Chen, H., Zhang, J., & Pu, J. (2019). A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control, 51, 82–89.CrossRef Wang, L., Liu, H., Lu, Y., Chen, H., Zhang, J., & Pu, J. (2019). A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control, 51, 82–89.CrossRef
216.
Zurück zum Zitat Hasan, M. K., Alam, M. A., Elahi, M. T., Roy, S., & Martí, R. (2021). DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artificial Intelligence in Medicine, 111, 102001.CrossRef Hasan, M. K., Alam, M. A., Elahi, M. T., Roy, S., & Martí, R. (2021). DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artificial Intelligence in Medicine, 111, 102001.CrossRef
217.
Zurück zum Zitat Zhang, S., Liang, G., Pan, S., & Zheng, L. (2018). A fast medical image super resolution method based on deep learning network. IEEE Access, 7, 12319–12327.CrossRef Zhang, S., Liang, G., Pan, S., & Zheng, L. (2018). A fast medical image super resolution method based on deep learning network. IEEE Access, 7, 12319–12327.CrossRef
218.
Zurück zum Zitat Kheirkhah, E., & Tabatabaie, Z. S. (2015). A hybrid face detection approach in color images with complex background. Indian Journal of Science and Technology, 8(1), 49–60.CrossRef Kheirkhah, E., & Tabatabaie, Z. S. (2015). A hybrid face detection approach in color images with complex background. Indian Journal of Science and Technology, 8(1), 49–60.CrossRef
219.
Zurück zum Zitat Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29(8), 1335–1346.CrossRef Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29(8), 1335–1346.CrossRef
220.
Zurück zum Zitat Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.CrossRef Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.CrossRef
221.
Zurück zum Zitat Heath, M., Sarkar, S., Sanocki, T., & Bowyer, K. (1998). Comparison of edge detectors: A methodology and initial study. Computer Vision and Image Understanding, 69(1), 38–54.CrossRef Heath, M., Sarkar, S., Sanocki, T., & Bowyer, K. (1998). Comparison of edge detectors: A methodology and initial study. Computer Vision and Image Understanding, 69(1), 38–54.CrossRef
222.
Zurück zum Zitat Avcibas, I., Sankur, B., & Sayood, K. (2002). Statistical evaluation of image quality measures. Journal of Electronic Imaging, 11(2), 206–223.CrossRef Avcibas, I., Sankur, B., & Sayood, K. (2002). Statistical evaluation of image quality measures. Journal of Electronic Imaging, 11(2), 206–223.CrossRef
223.
Zurück zum Zitat Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps (pp. 323–350). Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps (pp. 323–350).
224.
Zurück zum Zitat Seth, S., & Agarwal, B. (2018). A hybrid deep learning model for detecting diabetic retinopathy. Journal of Statistics and Management Systems, 21(4), 569–574.CrossRef Seth, S., & Agarwal, B. (2018). A hybrid deep learning model for detecting diabetic retinopathy. Journal of Statistics and Management Systems, 21(4), 569–574.CrossRef
225.
Zurück zum Zitat ElTanboly, A., Ghazal, M., Khalil, A., Shalaby, A., Mahmoud, A., Switala, A., El-Azab, M., Schaal, S., & El-Baz, A. (2018). An integrated framework for automatic clinical assessment of diabetic retinopathy grade using spectral domain OCT images. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1431–1435). ElTanboly, A., Ghazal, M., Khalil, A., Shalaby, A., Mahmoud, A., Switala, A., El-Azab, M., Schaal, S., & El-Baz, A. (2018). An integrated framework for automatic clinical assessment of diabetic retinopathy grade using spectral domain OCT images. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 1431–1435).
226.
Zurück zum Zitat Li, Y. H., Yeh, N. N., Chen, S. J., & Chung, Y. C. (2019). Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mobile Information Systems 2019. Li, Y. H., Yeh, N. N., Chen, S. J., & Chung, Y. C. (2019). Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mobile Information Systems 2019.
227.
Zurück zum Zitat Sisodia, D. S., Nair, S., & Khobragade, P. (2017). Diabetic retinal fundus images: Preprocessing and feature extraction for early detection of diabetic retinopathy. Biomedical and Pharmacology Journal, 10(2), 615–626.CrossRef Sisodia, D. S., Nair, S., & Khobragade, P. (2017). Diabetic retinal fundus images: Preprocessing and feature extraction for early detection of diabetic retinopathy. Biomedical and Pharmacology Journal, 10(2), 615–626.CrossRef
228.
Zurück zum Zitat Zhou, L., Zhao, Y., Yang, J., Yu, Q., & Xu, X. (2018). Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Processing, 12(4), 563–571.CrossRef Zhou, L., Zhao, Y., Yang, J., Yu, Q., & Xu, X. (2018). Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Processing, 12(4), 563–571.CrossRef
229.
Zurück zum Zitat Purandare, M., & Noronha, K. (2016). Hybrid system for automatic classification of Diabetic Retinopathy using fundus images. In 2016 Online international conference on green engineering and technologies (IC-GET) (pp. 1–5). Purandare, M., & Noronha, K. (2016). Hybrid system for automatic classification of Diabetic Retinopathy using fundus images. In 2016 Online international conference on green engineering and technologies (IC-GET) (pp. 1–5).
230.
Zurück zum Zitat Hossain, N. I., & Reza, S. (2017). Blood vessel detection from fundus image using Markov random field based image segmentation. In 2017 4th international conference on advances in electrical engineering (ICAEE) (pp. 123–127). Hossain, N. I., & Reza, S. (2017). Blood vessel detection from fundus image using Markov random field based image segmentation. In 2017 4th international conference on advances in electrical engineering (ICAEE) (pp. 123–127).
231.
Zurück zum Zitat Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2014). Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE Journal of Biomedical and Health Informatics, 19(3), 1118–1128. Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2014). Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE Journal of Biomedical and Health Informatics, 19(3), 1118–1128.
232.
Zurück zum Zitat Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., & Angelopoulou, E. (2013). Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Processing, 7(4), 373–383.MathSciNetCrossRef Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., & Angelopoulou, E. (2013). Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Processing, 7(4), 373–383.MathSciNetCrossRef
233.
Zurück zum Zitat Srivastava, R., Wong, D. W., Duan, L., Liu, J., & Wong, T.Y. (2015). Red lesion detection in retinal fundus images using Frangi-based filters. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5663–5666). Srivastava, R., Wong, D. W., Duan, L., Liu, J., & Wong, T.Y. (2015). Red lesion detection in retinal fundus images using Frangi-based filters. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5663–5666).
234.
Zurück zum Zitat Javidi, M., Pourreza, H. R., & Harati, A. (2017). Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Computer Methods and Programs in Biomedicine, 139, 93–108.CrossRef Javidi, M., Pourreza, H. R., & Harati, A. (2017). Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Computer Methods and Programs in Biomedicine, 139, 93–108.CrossRef
235.
Zurück zum Zitat Chowdhury, A. R., Chatterjee, T., & Banerjee, S. (2019). A random forest classifier-based approach in the detection of abnormalities in the retina. Medical & Biological Engineering & Computing, 57(1), 193–203.CrossRef Chowdhury, A. R., Chatterjee, T., & Banerjee, S. (2019). A random forest classifier-based approach in the detection of abnormalities in the retina. Medical & Biological Engineering & Computing, 57(1), 193–203.CrossRef
236.
Zurück zum Zitat Cao, W., Czarnek, N., Shan, J., & Li, L. (2018). Microaneurysm detection using principal component analysis and machine learning methods. IEEE Transactions on Nanobioscience, 17(3), 191–198.CrossRef Cao, W., Czarnek, N., Shan, J., & Li, L. (2018). Microaneurysm detection using principal component analysis and machine learning methods. IEEE Transactions on Nanobioscience, 17(3), 191–198.CrossRef
237.
Zurück zum Zitat Lara Rodríguez, L. D., & Urcid Serrano, G. (2016). Exudates and blood vessel segmentation in eye fundus images using the fourier and cosine discrete transforms. Computación y Sistemas, 20(4), 697–708.CrossRef Lara Rodríguez, L. D., & Urcid Serrano, G. (2016). Exudates and blood vessel segmentation in eye fundus images using the fourier and cosine discrete transforms. Computación y Sistemas, 20(4), 697–708.CrossRef
238.
Zurück zum Zitat Roychowdhury, S. (2016). Classification of large-scale fundus image data sets: a cloud-computing framework. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 3256–3259). Roychowdhury, S. (2016). Classification of large-scale fundus image data sets: a cloud-computing framework. In 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 3256–3259).
239.
Zurück zum Zitat Rahim, S. S., Palade, V., Shuttleworth, J., & Jayne, C. (2016). Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Informatics, 3(4), 249–267.CrossRef Rahim, S. S., Palade, V., Shuttleworth, J., & Jayne, C. (2016). Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Informatics, 3(4), 249–267.CrossRef
240.
Zurück zum Zitat Issac, A., Parthasarthi, M., Dutta, M.K. (2015). An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In 2015 2nd international conference on signal processing and integrated networks (SPIN) (pp. 143–147). Issac, A., Parthasarthi, M., Dutta, M.K. (2015). An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In 2015 2nd international conference on signal processing and integrated networks (SPIN) (pp. 143–147).
241.
Zurück zum Zitat Tan, N. M., Xu, Y., Goh, W. B., & Liu, J. (2015). Robust multi-scale superpixel classification for optic cup localization. Computerized Medical Imaging and Graphics, 40, 182–193.CrossRef Tan, N. M., Xu, Y., Goh, W. B., & Liu, J. (2015). Robust multi-scale superpixel classification for optic cup localization. Computerized Medical Imaging and Graphics, 40, 182–193.CrossRef
242.
Zurück zum Zitat Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41–49.MathSciNetCrossRef Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41–49.MathSciNetCrossRef
243.
Zurück zum Zitat Wang, S., Jin, K., Lu, H., Cheng, C., Ye, J., & Qian, D. (2015). Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Transactions on Medical Imaging, 35(4), 1046–1055.CrossRef Wang, S., Jin, K., Lu, H., Cheng, C., Ye, J., & Qian, D. (2015). Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Transactions on Medical Imaging, 35(4), 1046–1055.CrossRef
244.
Zurück zum Zitat Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan, V. (2015). Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. Journal of Ophthalmology, 2015, 180972.CrossRef Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan, V. (2015). Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. Journal of Ophthalmology, 2015, 180972.CrossRef
245.
Zurück zum Zitat Ghosh, A., Sarkar, A., Ashour, A. S., Balas-Timar, D., Dey, N., & Balas, V. E. (2015). Grid color moment features in glaucoma classification. International Journal of Advanced Computer Science and Applications, 6(9), 99–107.CrossRef Ghosh, A., Sarkar, A., Ashour, A. S., Balas-Timar, D., Dey, N., & Balas, V. E. (2015). Grid color moment features in glaucoma classification. International Journal of Advanced Computer Science and Applications, 6(9), 99–107.CrossRef
246.
Zurück zum Zitat Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., & Majid, M. (2015). Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In 2015 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 370–374). Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., & Majid, M. (2015). Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In 2015 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 370–374).
247.
Zurück zum Zitat Venhuizen, F. G., van Ginneken, B., Bloemen, B., van Grinsven, M. J., Philipsen, R., Hoyng, C., Theelen, T., & Sánchez, C. I. (2015) Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In Medical imaging 2015: Computer-aided diagnosis (Vol. 9414, p. 94141I). Venhuizen, F. G., van Ginneken, B., Bloemen, B., van Grinsven, M. J., Philipsen, R., Hoyng, C., Theelen, T., & Sánchez, C. I. (2015) Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In Medical imaging 2015: Computer-aided diagnosis (Vol. 9414, p. 94141I).
248.
Zurück zum Zitat Jeena, R. S., Sukesh Kumar, A., & Mahadevan, K. (2019). Stroke diagnosis from retinal fundus images using multi texture analysis. Journal of Intelligent & Fuzzy Systems, 36(3), 2025–2032.CrossRef Jeena, R. S., Sukesh Kumar, A., & Mahadevan, K. (2019). Stroke diagnosis from retinal fundus images using multi texture analysis. Journal of Intelligent & Fuzzy Systems, 36(3), 2025–2032.CrossRef
249.
Zurück zum Zitat Li, X., Pang, T., Xiong, B., Liu, W., Liang, P., & Wang, T. (2017) Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–11). Li, X., Pang, T., Xiong, B., Liu, W., Liang, P., & Wang, T. (2017) Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–11).
250.
Zurück zum Zitat Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., & Kim, R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.CrossRef Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., & Kim, R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410.CrossRef
251.
Zurück zum Zitat Patwari, M. B., Manza, R. R., Rajput, Y. M., Rathod, D. D., Saswade, M., & Deshpande, N. (2016). Classification and calculation of retinal blood vessels parameters. In IEEE's international conferences for convergence of technology, Pune, India (pp. 1–6). Patwari, M. B., Manza, R. R., Rajput, Y. M., Rathod, D. D., Saswade, M., & Deshpande, N. (2016). Classification and calculation of retinal blood vessels parameters. In IEEE's international conferences for convergence of technology, Pune, India (pp. 1–6).
252.
Zurück zum Zitat Wu, J., Zhang, S., Xiao, Z., Zhang, F., Geng, L., Lou, S., & Liu, M. (2019). Hemorrhage detection in fundus image based on 2D Gaussian fitting and human visual characteristics. Optics & Laser Technology, 110, 69–77.CrossRef Wu, J., Zhang, S., Xiao, Z., Zhang, F., Geng, L., Lou, S., & Liu, M. (2019). Hemorrhage detection in fundus image based on 2D Gaussian fitting and human visual characteristics. Optics & Laser Technology, 110, 69–77.CrossRef
253.
Zurück zum Zitat Adem, K., Hekim, M., & Demir, S. (2019). Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 499–515.CrossRef Adem, K., Hekim, M., & Demir, S. (2019). Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 499–515.CrossRef
254.
Zurück zum Zitat Prentašić, P., & Lončarić, S. (2015). Detection of exudates in fundus photographs using convolutional neural networks. In 2015 9th international symposium on image and signal processing and analysis (ISPA) (pp. 188–192). Prentašić, P., & Lončarić, S. (2015). Detection of exudates in fundus photographs using convolutional neural networks. In 2015 9th international symposium on image and signal processing and analysis (ISPA) (pp. 188–192).
255.
Zurück zum Zitat Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology, 125(8), 1199–1206.CrossRef Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology, 125(8), 1199–1206.CrossRef
256.
Zurück zum Zitat Perdomo, O., Otálora, S., González, F. A., Meriaudeau, F., & Müller, H. (2018). Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018 Apr 4 (pp. 1423–1426). Perdomo, O., Otálora, S., González, F. A., Meriaudeau, F., & Müller, H. (2018). Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018 Apr 4 (pp. 1423–1426).
257.
Zurück zum Zitat Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281–292.CrossRef Prentašić, P., & Lončarić, S. (2016). Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Computer Methods and Programs in Biomedicine, 137, 281–292.CrossRef
258.
Zurück zum Zitat Bhat, S. H., & Kumar, P. (2019). Segmentation of optic disc by localized active contour model in retinal fundus image. In Smart innovations in communication and computational sciences (pp. 35–44). Bhat, S. H., & Kumar, P. (2019). Segmentation of optic disc by localized active contour model in retinal fundus image. In Smart innovations in communication and computational sciences (pp. 35–44).
259.
260.
Zurück zum Zitat Baddeley, A. J. (1992). An error metric for binary images. Robust computer vision 5978. Baddeley, A. J. (1992). An error metric for binary images. Robust computer vision 5978.
261.
Zurück zum Zitat Abdou, I. E., & Pratt, W. K. (1979). Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE, 67(5), 753–763.CrossRef Abdou, I. E., & Pratt, W. K. (1979). Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE, 67(5), 753–763.CrossRef
Metadaten
Titel
A Systematic Review on Deep Learning Techniques for Diabetic Retinopathy Segmentation and Detection Using Ocular Imaging Modalities
verfasst von
Richa Vij
Sakshi Arora
Publikationsdatum
04.04.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10968-w

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt