Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

30.03.2024

Performance Optimization of SAR ADC using Dynamic Controlled Comparator at 45 nm Technology for Biomedical and IoT Applications

verfasst von: Mohit Tyagi, Poornima Mittal, Parvin Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Emerging biomedical applications such as electrocardiography, electroencephalogram, wireless implantable devices have required optimized power-based SAR ADC in them to reduce package cost and to extend battery life. In view of power optimized SAR ADC, a dynamic controlled comparator with novel static power reduction logic incorporated with common mode kickback noise reduction technique is designed at 45 nm technology in CADENCE Virtuoso in this paper. Designed comparator is analyzed in terms of performance parameters; static power dissipation, transient power dissipation, maximum sampling rate, offset voltage and delay. Simulation and behaviour modeling analyses of proposed dynamic comparator has resulted in five times reduction in static power dissipation along with optimization of transient power and sampling rate as well compared to previously available double tail dynamic comparator. Moreover, it has been mentioned that proposed dynamic comparator is dissipating 2.36 pW of static power and 3.59 nW of transient power with sampling rate of 240 KS/s at 0.5 V. Further, the kickback noise of proposed design is limited to 4.7 mV with maximum delay of 124 ps. Finally, the novel outcomes of proposed comparator are the optimization in required parameters such as power, delay, offset voltage and kickback noise for biomedical applications as compared to double tail dynamic comparator. The proposed consideration for SAR ADC can become a backbone for low power biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dondi, S., Vecchi, D., Boni, A., & Bigi, M. (2006). A 6- bit, 1.2 GHz Interleaved SAR ADC in 90 nm CMOS. In 2006 Ph.D. Research in Microelectronics and Electronics (pp. 301–304). Dondi, S., Vecchi, D., Boni, A., & Bigi, M. (2006). A 6- bit, 1.2 GHz Interleaved SAR ADC in 90 nm CMOS. In 2006 Ph.D. Research in Microelectronics and Electronics (pp. 301–304).
2.
Zurück zum Zitat Junhui, L., Xin, L., Huang, L., & Wu, J. (2020). An energy-efficient switching scheme with low common-mode voltage variation and no-capacitor-splitting DAC for SAR ADC. Analog Integrated Circuits and Signal Processing, 104, 93–101.CrossRef Junhui, L., Xin, L., Huang, L., & Wu, J. (2020). An energy-efficient switching scheme with low common-mode voltage variation and no-capacitor-splitting DAC for SAR ADC. Analog Integrated Circuits and Signal Processing, 104, 93–101.CrossRef
4.
Zurück zum Zitat Mao, W., Li, Y., Heng, C., & Lian, Y. (2018). A Low power 12 bit 1-KS/s SAR ADC for biomedical signal processing SAR-assisted time interleaved SAR (SATI-SAR) ADC. IEEE Transactions on Circuits & Systems-1, 66(2), 1549–8328. Mao, W., Li, Y., Heng, C., & Lian, Y. (2018). A Low power 12 bit 1-KS/s SAR ADC for biomedical signal processing SAR-assisted time interleaved SAR (SATI-SAR) ADC. IEEE Transactions on Circuits & Systems-1, 66(2), 1549–8328.
5.
Zurück zum Zitat Wang, T. Y., Li, H. Y., Ma, Z. Y., Huang, Y. J., & Peng, S. Y. (2018). A bypass switching SAR-ADC with a dynamic proximity comparator for biomedical applications. IEEE Journal of Solid-State Circuits, 53(6), 0018–9200.CrossRef Wang, T. Y., Li, H. Y., Ma, Z. Y., Huang, Y. J., & Peng, S. Y. (2018). A bypass switching SAR-ADC with a dynamic proximity comparator for biomedical applications. IEEE Journal of Solid-State Circuits, 53(6), 0018–9200.CrossRef
6.
Zurück zum Zitat Liu, T., Xu, D., Niu, H., & Meng, Q. (2020). A 12-bit 120 MS/s SAR ADC with improved split capacitive DAC and low noise dynamic comparator. Springer, 102, 403–413. Liu, T., Xu, D., Niu, H., & Meng, Q. (2020). A 12-bit 120 MS/s SAR ADC with improved split capacitive DAC and low noise dynamic comparator. Springer, 102, 403–413.
7.
Zurück zum Zitat McCrery, L., & Gray, P. R. (1975). AII-MOS charge redistribution analog-to-digital conversion technique. Part I IEEE Journal of Solid-State Circuits, 10(6), 371–379.CrossRef McCrery, L., & Gray, P. R. (1975). AII-MOS charge redistribution analog-to-digital conversion technique. Part I IEEE Journal of Solid-State Circuits, 10(6), 371–379.CrossRef
8.
Zurück zum Zitat Tang, X., Shen, L., Kasap, B., Yang, X., Shi, W., Mukherjee, A., Pan, D. Z., & Sun, N. (2020). An energy-efficient comparator with dynamic floating inverter amplifier. IEEE Journal of Solid-State Circuits, 55(4), 1011–1022.CrossRef Tang, X., Shen, L., Kasap, B., Yang, X., Shi, W., Mukherjee, A., Pan, D. Z., & Sun, N. (2020). An energy-efficient comparator with dynamic floating inverter amplifier. IEEE Journal of Solid-State Circuits, 55(4), 1011–1022.CrossRef
9.
Zurück zum Zitat Chen, L., Sanyal, A., Ma, J., Tang, X., & Sun, N. (2016). Comparator common-mode variation effects analysis and its application in SAR ADCs. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2014–2017). Chen, L., Sanyal, A., Ma, J., Tang, X., & Sun, N. (2016). Comparator common-mode variation effects analysis and its application in SAR ADCs. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2014–2017).
10.
Zurück zum Zitat Yousefirad, M., & Yavari, M. (2021). Kick back noise reduction and offset cancellation technique for dynamic latched comparator. In 29th Iranian conference on electrical engineering (pp. 149–153). Yousefirad, M., & Yavari, M. (2021). Kick back noise reduction and offset cancellation technique for dynamic latched comparator. In 29th Iranian conference on electrical engineering (pp. 149–153).
11.
Zurück zum Zitat Mashhadi, S. B., & Lotfi, R. (2014). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 22, 343–352.CrossRef Mashhadi, S. B., & Lotfi, R. (2014). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 22, 343–352.CrossRef
12.
Zurück zum Zitat Tang, X., Liu, J., Shen, Y., Li, S., Shen, L., Sanyal, A., Ragab, K., & Sun, N. (2022). Low-power SAR ADC design: Overview and survey of state-of-the-art techniques. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(6), 2249–2262.CrossRef Tang, X., Liu, J., Shen, Y., Li, S., Shen, L., Sanyal, A., Ragab, K., & Sun, N. (2022). Low-power SAR ADC design: Overview and survey of state-of-the-art techniques. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(6), 2249–2262.CrossRef
13.
Zurück zum Zitat Vafaei, M., Hosseini, M. R., Abiri, E., & Salehi, M. R. (2023). A 0.2-V 1.2 nW 1-KS/s SAR ADC with a novel comparator structure for biomedical applications. Integration, the VLSI journal, 88, 362–370.CrossRef Vafaei, M., Hosseini, M. R., Abiri, E., & Salehi, M. R. (2023). A 0.2-V 1.2 nW 1-KS/s SAR ADC with a novel comparator structure for biomedical applications. Integration, the VLSI journal, 88, 362–370.CrossRef
14.
Zurück zum Zitat Miyahara, M., Asada, Y., Paik, D., & Matsuzawa, A. (2008). A low-noise self-calibrating dynamic comparator for high-speed ADCs. In IEEE Asian Solid-State Circuits Conference Fukuoka (pp. 269–272). Miyahara, M., Asada, Y., Paik, D., & Matsuzawa, A. (2008). A low-noise self-calibrating dynamic comparator for high-speed ADCs. In IEEE Asian Solid-State Circuits Conference Fukuoka (pp. 269–272).
15.
Zurück zum Zitat Bindra, H. S., Lokin, C. E., Schinkel, D., Annema, A. J., & Nauta, B. (2018). A 1.2-V dynamic bias latch-type comparator in 65-nm CMOS with 0.4-mV input noise. IEEE Journal of Solid-State Circuits, 53(7), 1902–1912.CrossRef Bindra, H. S., Lokin, C. E., Schinkel, D., Annema, A. J., & Nauta, B. (2018). A 1.2-V dynamic bias latch-type comparator in 65-nm CMOS with 0.4-mV input noise. IEEE Journal of Solid-State Circuits, 53(7), 1902–1912.CrossRef
16.
Zurück zum Zitat Figueiredo, P. M., & Vital, J. C. (2004). Low kickback noise techniques for CMOS latched comparators. In Chipidea Microelectrónica (Vol. 733, pp. 2780-2920). SA. Taguspar Figueiredo, P. M., & Vital, J. C. (2004). Low kickback noise techniques for CMOS latched comparators. In Chipidea Microelectrónica (Vol. 733, pp. 2780-2920). SA. Taguspar
17.
Zurück zum Zitat Goll, B., & Zimmermann, H. (2009). A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65. IEEE Transactions Circuits System II, Exp. Briefs, 56(11), 810–814. Goll, B., & Zimmermann, H. (2009). A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65. IEEE Transactions Circuits System II, Exp. Briefs, 56(11), 810–814.
19.
Zurück zum Zitat Ahmadi, M., & Namgoong, W. (2015). Comparator power minimization analysis for SAR ADC using multiple comparators. IEEE transactions on Circuits and Systems, 62(10), 1549–8328.MathSciNet Ahmadi, M., & Namgoong, W. (2015). Comparator power minimization analysis for SAR ADC using multiple comparators. IEEE transactions on Circuits and Systems, 62(10), 1549–8328.MathSciNet
20.
Zurück zum Zitat Hu, W., Liu, Y., Nguyen, T., Lie, D., & Ginsburg, B. (2013). An 8-bit single ended Ultra low power SAR ADC with a novel DAC-switching method and a counter based-digital control circuitry. IEEE Transactions on Circuits & Systems-1, 60(7), 1726–1739.CrossRef Hu, W., Liu, Y., Nguyen, T., Lie, D., & Ginsburg, B. (2013). An 8-bit single ended Ultra low power SAR ADC with a novel DAC-switching method and a counter based-digital control circuitry. IEEE Transactions on Circuits & Systems-1, 60(7), 1726–1739.CrossRef
22.
Zurück zum Zitat Tyagi, M., Mittal, P., & Kumar, P. (2023). Design of 8-bit low power SAR ADC in 45nm for biomedical implants. Physica Scripta, IOP science Journal, 98, 116101.CrossRef Tyagi, M., Mittal, P., & Kumar, P. (2023). Design of 8-bit low power SAR ADC in 45nm for biomedical implants. Physica Scripta, IOP science Journal, 98, 116101.CrossRef
23.
Zurück zum Zitat Cheong, J., Chan, K., Khannur, P., Tiew, K., & Je, M. (2011). A 400-nW 19.5 FJ/conversion step 8 ENOB 80-KS/S SAR ADC in 0.18- µm CMOS. IEEE Transactions on Circuits & Systems-11 express briefs, 58(7), 407–411.CrossRef Cheong, J., Chan, K., Khannur, P., Tiew, K., & Je, M. (2011). A 400-nW 19.5 FJ/conversion step 8 ENOB 80-KS/S SAR ADC in 0.18- µm CMOS. IEEE Transactions on Circuits & Systems-11 express briefs, 58(7), 407–411.CrossRef
24.
Zurück zum Zitat Shim, J., Kim, M., Hong, S., & Hwon, O. (2018). An ultra-low power 16 bit second order incremental ADC with SAR-based integrator for IoT sensor applications. IEEE Transactions on Circuits & Systems-11, 65(12), 1899–1903. Shim, J., Kim, M., Hong, S., & Hwon, O. (2018). An ultra-low power 16 bit second order incremental ADC with SAR-based integrator for IoT sensor applications. IEEE Transactions on Circuits & Systems-11, 65(12), 1899–1903.
Metadaten
Titel
Performance Optimization of SAR ADC using Dynamic Controlled Comparator at 45 nm Technology for Biomedical and IoT Applications
verfasst von
Mohit Tyagi
Poornima Mittal
Parvin Kumar
Publikationsdatum
30.03.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10971-1

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt