Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

29.03.2024

Wireless Sensor Networks in Healthcare System: A Systematic Review

verfasst von: Hradesh Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In modern era wireless sensor networks used in many areas like military, engineering, surveillance, agriculture, healthcare, home etc. Healthcare is one of the most important areas where wireless sensor networks play an important role. In this paper a detailed review on wireless sensor networks in healthcare system is presented to find out the best communication technology and sensors used in healthcare system. Various sensors (pulse oximetry sensor, sweat rate sensor, glucose sensor, acceleration sensor and ECG electrode) are used in healthcare system are presented in this paper. Several communication techniques (Bluetooth, Zigbee, NFC, UWB and Wi-Fi) are used in healthcare system also discussed. Out of these all-communication technologies UWB is more powerful and widely used in recent time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farsi, M., Elhosseini, M. A., Badawy, M., Arafat, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef Farsi, M., Elhosseini, M. A., Badawy, M., Arafat, H., & Zain Eldin, H. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef
2.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
3.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
4.
Zurück zum Zitat Lv, Y., Liu, Y., & Hua, J. (2019). A study on the application of WSN positioning technology to unattended areas. IEEE Access, 7, 38085–38099.CrossRef Lv, Y., Liu, Y., & Hua, J. (2019). A study on the application of WSN positioning technology to unattended areas. IEEE Access, 7, 38085–38099.CrossRef
5.
Zurück zum Zitat Vera-Amaro, R., Rivero-Angeles, M. E., & Luviano-Juarez, A. (2019). Design and analysis of wireless sensor networks for animal tracking in large monitoring polar regions using phase-type distributions and single sensor model. IEEE Access, 7, 45911–45929.CrossRef Vera-Amaro, R., Rivero-Angeles, M. E., & Luviano-Juarez, A. (2019). Design and analysis of wireless sensor networks for animal tracking in large monitoring polar regions using phase-type distributions and single sensor model. IEEE Access, 7, 45911–45929.CrossRef
6.
Zurück zum Zitat Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. arXiv preprint arXiv:1901.00511. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. arXiv preprint arXiv:​1901.​00511.
7.
Zurück zum Zitat Guo, H., Johari, P., Jornet, J. M., & Sun, Z. (2016). Intra-body optical channel modeling for in vivo wireless nanosensor networks. IEEE Transactions on Nanobioscience, 15(1), 41–52.CrossRef Guo, H., Johari, P., Jornet, J. M., & Sun, Z. (2016). Intra-body optical channel modeling for in vivo wireless nanosensor networks. IEEE Transactions on Nanobioscience, 15(1), 41–52.CrossRef
8.
Zurück zum Zitat Maw, H. A., Xiao, H., Christianson, B., & Malcolm, J. A. (2016). BTG-AC: Break-the-glass access control model for medical data in wireless sensor networks. IEEE Journal of Biomedical and Health Informatics, 20(3), 763–774.CrossRef Maw, H. A., Xiao, H., Christianson, B., & Malcolm, J. A. (2016). BTG-AC: Break-the-glass access control model for medical data in wireless sensor networks. IEEE Journal of Biomedical and Health Informatics, 20(3), 763–774.CrossRef
9.
Zurück zum Zitat Magalotti, D., Placidi, P., Dionigi, M., Scorzoni, A., & Servoli, L. (2016). Experimental characterization of a personal wireless sensor network for the medical X-ray dosimetry. IEEE Transactions on Instrumentation and Measurement, 65(9), 2002–2011.CrossRef Magalotti, D., Placidi, P., Dionigi, M., Scorzoni, A., & Servoli, L. (2016). Experimental characterization of a personal wireless sensor network for the medical X-ray dosimetry. IEEE Transactions on Instrumentation and Measurement, 65(9), 2002–2011.CrossRef
10.
Zurück zum Zitat Habib, C., Makhoul, A., Darazi, R., & Salim, C. (2016). Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Transactions on Industrial Informatics, 12(6), 2342–2352.CrossRef Habib, C., Makhoul, A., Darazi, R., & Salim, C. (2016). Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Transactions on Industrial Informatics, 12(6), 2342–2352.CrossRef
11.
Zurück zum Zitat Liang, T., & Yuan, Y. J. (2016). Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors Journal, 16(23), 8186–8199. Liang, T., & Yuan, Y. J. (2016). Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors Journal, 16(23), 8186–8199.
12.
Zurück zum Zitat Zheng, G., Shankaran, R., Orgun, M. A., Qiao, L., & Saleem, K. (2017). Ideas and challenges for securing wireless implantable medical devices: A review. IEEE Sensors Journal, 17(3), 562–576.CrossRef Zheng, G., Shankaran, R., Orgun, M. A., Qiao, L., & Saleem, K. (2017). Ideas and challenges for securing wireless implantable medical devices: A review. IEEE Sensors Journal, 17(3), 562–576.CrossRef
13.
Zurück zum Zitat Mahmud, M. S., Wang, H., Esfar-E-Alam, A. M., & Fang, H. (2017). A wireless health monitoring system using mobile phone accessories. IEEE Internet of Things Journal, 4(6), 2009–2018.CrossRef Mahmud, M. S., Wang, H., Esfar-E-Alam, A. M., & Fang, H. (2017). A wireless health monitoring system using mobile phone accessories. IEEE Internet of Things Journal, 4(6), 2009–2018.CrossRef
14.
Zurück zum Zitat Alaiad, A., & Zhou, L. (2017). Patients’ adoption of WSN-based smart home healthcare systems: An integrated model of facilitators and barriers. IEEE Transactions on Professional Communication, 60(1), 4–23.CrossRef Alaiad, A., & Zhou, L. (2017). Patients’ adoption of WSN-based smart home healthcare systems: An integrated model of facilitators and barriers. IEEE Transactions on Professional Communication, 60(1), 4–23.CrossRef
15.
Zurück zum Zitat Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. K. (2017). Wearable medical sensor-based system design: A survey. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 124–138.CrossRef Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N. K. (2017). Wearable medical sensor-based system design: A survey. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 124–138.CrossRef
16.
Zurück zum Zitat Chen, S. L., Tuan, M. C., Lee, H. Y., & Lin, T. L. (2017). VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access, 5, 4077–4086.CrossRef Chen, S. L., Tuan, M. C., Lee, H. Y., & Lin, T. L. (2017). VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access, 5, 4077–4086.CrossRef
17.
Zurück zum Zitat Huang, H., Gong, T., Ye, N., Wang, R., & Dou, Y. (2017). Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3), 1227–1237.CrossRef Huang, H., Gong, T., Ye, N., Wang, R., & Dou, Y. (2017). Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Transactions on Industrial Informatics, 13(3), 1227–1237.CrossRef
18.
Zurück zum Zitat Samarah, S., Al Zamil, M. G., Aleroud, A. F., Rawashdeh, M., Alhamid, M. F., & Alamri, A. (2017). An efficient activity recognition framework: Toward privacy-sensitive health data sensing. IEEE Access, 5, 3848–3859.CrossRef Samarah, S., Al Zamil, M. G., Aleroud, A. F., Rawashdeh, M., Alhamid, M. F., & Alamri, A. (2017). An efficient activity recognition framework: Toward privacy-sensitive health data sensing. IEEE Access, 5, 3848–3859.CrossRef
19.
Zurück zum Zitat Yin, H., & Jha, N. K. (2017). A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 228–241.CrossRef Yin, H., & Jha, N. K. (2017). A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 228–241.CrossRef
20.
Zurück zum Zitat Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.CrossRef Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.CrossRef
21.
Zurück zum Zitat Zhang, H., Liu, J., & Kato, N. (2016). Threshold tuning-based wearable sensor fault detection for reliable medical monitoring using Bayesian network model. IEEE Systems Journal, 12(2), 1886–1896.CrossRef Zhang, H., Liu, J., & Kato, N. (2016). Threshold tuning-based wearable sensor fault detection for reliable medical monitoring using Bayesian network model. IEEE Systems Journal, 12(2), 1886–1896.CrossRef
22.
Zurück zum Zitat Lin, J. Y., Chen, H. C., & Yen, M. Y. (2017). Sensor/antenna interface IC for implantable biomedical monitoring system. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1660–1667.CrossRef Lin, J. Y., Chen, H. C., & Yen, M. Y. (2017). Sensor/antenna interface IC for implantable biomedical monitoring system. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1660–1667.CrossRef
23.
Zurück zum Zitat Saleh, N., Kassem, A., & Haidar, A. M. (2018). Energy-efficient architecture for wireless sensor networks in healthcare applications. IEEE Access, 6, 6478–6486.CrossRef Saleh, N., Kassem, A., & Haidar, A. M. (2018). Energy-efficient architecture for wireless sensor networks in healthcare applications. IEEE Access, 6, 6478–6486.CrossRef
24.
Zurück zum Zitat Milici, S., Lázaro, A., Villarino, R., Girbau, D., & Magnarosa, M. (2018). Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sensors Journal, 18(5), 2145–2152.CrossRef Milici, S., Lázaro, A., Villarino, R., Girbau, D., & Magnarosa, M. (2018). Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sensors Journal, 18(5), 2145–2152.CrossRef
25.
Zurück zum Zitat Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S. C., & Zhang, Y. T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Transactions on Biomedical Engineering, 65(12), 2751–2759.CrossRef Pirbhulal, S., Zhang, H., Wu, W., Mukhopadhyay, S. C., & Zhang, Y. T. (2018). Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Transactions on Biomedical Engineering, 65(12), 2751–2759.CrossRef
26.
Zurück zum Zitat Yang, L., Zhou, Y. J., Zhang, C., Yang, X. M., Yang, X. X., & Tan, C. (2018). Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 109–115.CrossRef Yang, L., Zhou, Y. J., Zhang, C., Yang, X. M., Yang, X. X., & Tan, C. (2018). Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 109–115.CrossRef
27.
Zurück zum Zitat Wu, J. X., Huang, P. T., Li, C. M., & Lin, C. H. (2018). Bidirectional hetero-associative memory network with flexible sensors and cloud computing for blood leakage detection in intravenous and dialysis therapy. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 298–307.CrossRef Wu, J. X., Huang, P. T., Li, C. M., & Lin, C. H. (2018). Bidirectional hetero-associative memory network with flexible sensors and cloud computing for blood leakage detection in intravenous and dialysis therapy. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 298–307.CrossRef
28.
Zurück zum Zitat Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef
29.
Zurück zum Zitat Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.CrossRef Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.CrossRef
30.
Zurück zum Zitat Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.CrossRef Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.CrossRef
31.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., & Wang, C. X. (2016). 5G ultra-dense cellular networks. IEEE Transactions on Wireless Communications, 23(1), 72_79. Ge, X., Tu, S., Mao, G., & Wang, C. X. (2016). 5G ultra-dense cellular networks. IEEE Transactions on Wireless Communications, 23(1), 72_79.
32.
33.
Zurück zum Zitat Chan, M., EstèVe, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156.CrossRef Chan, M., EstèVe, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156.CrossRef
34.
Zurück zum Zitat Nagae, D., & Mase, A. (2010). Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing. Review of Scientific Instruments, 81(9), 094301.CrossRef Nagae, D., & Mase, A. (2010). Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing. Review of Scientific Instruments, 81(9), 094301.CrossRef
35.
Zurück zum Zitat Zanon, M., Sparacino, G., Facchinetti, A., Riz, M., Talary, M. S., Suri, R. E., et al. (2012). Non-invasive continuous glucose monitoring: Improved accuracy of point and trend estimates of the multisensor system. Medical & Biological Engineering & Computing, 50(10), 1047–1057.CrossRef Zanon, M., Sparacino, G., Facchinetti, A., Riz, M., Talary, M. S., Suri, R. E., et al. (2012). Non-invasive continuous glucose monitoring: Improved accuracy of point and trend estimates of the multisensor system. Medical & Biological Engineering & Computing, 50(10), 1047–1057.CrossRef
36.
Zurück zum Zitat Kovatchev, B. P., Renard, E., Cobelli, C., Zisser, H. C., Keith-Hynes, P., Anderson, S. M., et al. (2013). Feasibility of outpatient fully integrated closed-loop control: First studies of wearable artificial pancreas. Diabetes Care, 36(7), 1851–1858.CrossRef Kovatchev, B. P., Renard, E., Cobelli, C., Zisser, H. C., Keith-Hynes, P., Anderson, S. M., et al. (2013). Feasibility of outpatient fully integrated closed-loop control: First studies of wearable artificial pancreas. Diabetes Care, 36(7), 1851–1858.CrossRef
37.
Zurück zum Zitat Kuo, Y. L., Culhane, K. M., Thomason, P., Tirosh, O., & Baker, R. (2009). Measuring distance walked and step count in children with cerebral palsy: An evaluation of two portable activity monitors. Gait & Posture, 29(2), 304–310.CrossRef Kuo, Y. L., Culhane, K. M., Thomason, P., Tirosh, O., & Baker, R. (2009). Measuring distance walked and step count in children with cerebral palsy: An evaluation of two portable activity monitors. Gait & Posture, 29(2), 304–310.CrossRef
38.
Zurück zum Zitat Rand, D., Eng, J. J., Tang, P. F., Jeng, J. S., & Hung, C. (2009). How active are people with stroke? Use of accelerometers to assess physical activity. Stroke, 40(1), 163–168.CrossRef Rand, D., Eng, J. J., Tang, P. F., Jeng, J. S., & Hung, C. (2009). How active are people with stroke? Use of accelerometers to assess physical activity. Stroke, 40(1), 163–168.CrossRef
39.
Zurück zum Zitat Kirste, T., Hoffmeyer, A., Koldrack, P., Bauer, A., Schubert, S., Schröder, S., & Teipel, S. (2014). Detecting the effect of Alzheimer’s disease on everyday motion behavior. Journal of Alzheimer’s Disease, 38(1), 121–132.CrossRef Kirste, T., Hoffmeyer, A., Koldrack, P., Bauer, A., Schubert, S., Schröder, S., & Teipel, S. (2014). Detecting the effect of Alzheimer’s disease on everyday motion behavior. Journal of Alzheimer’s Disease, 38(1), 121–132.CrossRef
40.
Zurück zum Zitat Weiss, A., Sharifi, S., Plotnik, M., van Vugt, J. P., Giladi, N., & Hausdorff, J. M. (2011). Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural Repair, 25(9), 810–818.CrossRef Weiss, A., Sharifi, S., Plotnik, M., van Vugt, J. P., Giladi, N., & Hausdorff, J. M. (2011). Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural Repair, 25(9), 810–818.CrossRef
41.
Zurück zum Zitat Baram, Y., & Lenger, R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation: Technology at the Neural Interface, 15(1), 48–52. Baram, Y., & Lenger, R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation: Technology at the Neural Interface, 15(1), 48–52.
42.
Zurück zum Zitat Lockman, J., Fisher, R. S., & Olson, D. M. (2011). Detection of seizure-like movements using a wrist accelerometer. Epilepsy & Behavior, 20(4), 638–641.CrossRef Lockman, J., Fisher, R. S., & Olson, D. M. (2011). Detection of seizure-like movements using a wrist accelerometer. Epilepsy & Behavior, 20(4), 638–641.CrossRef
43.
Zurück zum Zitat Cook, D. J., Thompson, J. E., Prinsen, S. K., Dearani, J. A., & Deschamps, C. (2013). Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology. The Annals of Thoracic Surgery, 96(3), 1057–1061.CrossRef Cook, D. J., Thompson, J. E., Prinsen, S. K., Dearani, J. A., & Deschamps, C. (2013). Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology. The Annals of Thoracic Surgery, 96(3), 1057–1061.CrossRef
44.
Zurück zum Zitat Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., & Howard, J. (2003). Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development, 40(5; SUPP/2), 45–58. Steele, B. G., Belza, B., Cain, K., Warms, C., Coppersmith, J., & Howard, J. (2003). Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development40(5; SUPP/2), 45–58.
45.
Zurück zum Zitat Malhi, K., Mukhopadhyay, S. C., Schnepper, J., Haefke, M., & Ewald, H. (2010). A zigbee-based wearable physiological parameters monitoring system. IEEE Sensors Journal, 12(3), 423–430.CrossRef Malhi, K., Mukhopadhyay, S. C., Schnepper, J., Haefke, M., & Ewald, H. (2010). A zigbee-based wearable physiological parameters monitoring system. IEEE Sensors Journal, 12(3), 423–430.CrossRef
46.
Zurück zum Zitat Jara, A. J., Lopez, P., Fernandez, D., Zamora, M. A., Ubeda, B., & Skarmeta, A. F. (2013). Communication protocol for enabling continuous monitoring of elderly people through near field communications. Interacting with Computers, 26(2), 145–168.CrossRef Jara, A. J., Lopez, P., Fernandez, D., Zamora, M. A., Ubeda, B., & Skarmeta, A. F. (2013). Communication protocol for enabling continuous monitoring of elderly people through near field communications. Interacting with Computers, 26(2), 145–168.CrossRef
47.
Zurück zum Zitat Kastner, P., Morak, J., Modre, R., Kollmann, A., Ebner, C., Fruhwald, F. M., & Schreier, G. (2010). Innovative telemonitoring system for cardiology: From science to routine operation. Applied Clinical Informatics, 1(02), 165–176.CrossRef Kastner, P., Morak, J., Modre, R., Kollmann, A., Ebner, C., Fruhwald, F. M., & Schreier, G. (2010). Innovative telemonitoring system for cardiology: From science to routine operation. Applied Clinical Informatics, 1(02), 165–176.CrossRef
48.
Zurück zum Zitat Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., & Schreier, G. (2011). Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Transactions on Information Technology in Biomedicine, 16(1), 17–23.CrossRef Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., & Schreier, G. (2011). Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Transactions on Information Technology in Biomedicine, 16(1), 17–23.CrossRef
49.
Zurück zum Zitat Bernardi, P., Cicchetti, R., Pisa, S., Pittella, E., Piuzzi, E., & Testa, O. (2013). Design, realization, and test of a UWB radar sensor for breath activity monitoring. IEEE Sensors Journal, 14(2), 584–596.CrossRef Bernardi, P., Cicchetti, R., Pisa, S., Pittella, E., Piuzzi, E., & Testa, O. (2013). Design, realization, and test of a UWB radar sensor for breath activity monitoring. IEEE Sensors Journal, 14(2), 584–596.CrossRef
50.
Zurück zum Zitat Schleicher, B., Nasr, I., Trasser, A., & Schumacher, H. (2013). IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2076–2085.CrossRef Schleicher, B., Nasr, I., Trasser, A., & Schumacher, H. (2013). IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2076–2085.CrossRef
51.
Zurück zum Zitat Sakamoto, T., Imasaka, R., Taki, H., Sato, T., Yoshioka, M., Inoue, K., et al. (2015). Accurate heartbeat monitoring using ultra-wideband radar. IEICE Electronics Express, 12, 20141197.CrossRef Sakamoto, T., Imasaka, R., Taki, H., Sato, T., Yoshioka, M., Inoue, K., et al. (2015). Accurate heartbeat monitoring using ultra-wideband radar. IEICE Electronics Express, 12, 20141197.CrossRef
52.
Zurück zum Zitat Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanatà, A., & De Rossi, D. (2011). SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 503–510.CrossRef Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanatà, A., & De Rossi, D. (2011). SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 503–510.CrossRef
53.
Zurück zum Zitat Coyle, S., Lau, K. T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., et al. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364–370.CrossRef Coyle, S., Lau, K. T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., et al. (2010). BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364–370.CrossRef
54.
Zurück zum Zitat Curone, D., Secco, E. L., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M., ... & Magenes, G. (2010). Smart garments for emergency operators: The ProeTEX project. IEEE Transactions on Information Technology in Biomedicine, 14(3), 694–701. Curone, D., Secco, E. L., Tognetti, A., Loriga, G., Dudnik, G., Risatti, M., ... & Magenes, G. (2010). Smart garments for emergency operators: The ProeTEX project. IEEE Transactions on Information Technology in Biomedicine, 14(3), 694–701.
55.
Zurück zum Zitat Kim, Y., Lee, S., & Lee, S. (2015). Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE Journal of Biomedical and Health Informatics, 20(1), 222–230.CrossRef Kim, Y., Lee, S., & Lee, S. (2015). Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE Journal of Biomedical and Health Informatics, 20(1), 222–230.CrossRef
56.
Zurück zum Zitat Anliker, U., Ward, J. A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., et al. (2004). AMON: A wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine, 8(4), 415–427.CrossRef Anliker, U., Ward, J. A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., et al. (2004). AMON: A wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine, 8(4), 415–427.CrossRef
57.
Zurück zum Zitat Tada, Y., Amano, Y., Sato, T., Saito, S., & Inoue, M. (2015). A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads. Fibers, 3(4), 463–477.CrossRef Tada, Y., Amano, Y., Sato, T., Saito, S., & Inoue, M. (2015). A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads. Fibers, 3(4), 463–477.CrossRef
58.
Zurück zum Zitat Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: An advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27(5), 671–691.CrossRef Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: An advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27(5), 671–691.CrossRef
59.
Zurück zum Zitat Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050–4059.CrossRef Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050–4059.CrossRef
60.
Zurück zum Zitat Yotter, R. A., & Wilson, D. M. (2004). Sensor technologies for monitoring metabolic activity in single cells-part II: Nonoptical methods and applications. IEEE Sensors Journal, 4(4), 412–429.CrossRef Yotter, R. A., & Wilson, D. M. (2004). Sensor technologies for monitoring metabolic activity in single cells-part II: Nonoptical methods and applications. IEEE Sensors Journal, 4(4), 412–429.CrossRef
61.
Zurück zum Zitat Wilson, D. M., Hoyt, S., Janata, J., Booksh, K., & Obando, L. (2001). Chemical sensors for portable, handheld field instruments. IEEE Sensors Journal, 1(4), 256–274.CrossRef Wilson, D. M., Hoyt, S., Janata, J., Booksh, K., & Obando, L. (2001). Chemical sensors for portable, handheld field instruments. IEEE Sensors Journal, 1(4), 256–274.CrossRef
62.
63.
Zurück zum Zitat Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.CrossRef Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.CrossRef
64.
Zurück zum Zitat Wukitsch, M. W., Petterson, M. T., Tobler, D. R., & Pologe, J. A. (1988). Pulse oximetry: Analysis of theory, technology, and practice. Journal of Clinical Monitoring, 4(4), 290–301.CrossRef Wukitsch, M. W., Petterson, M. T., Tobler, D. R., & Pologe, J. A. (1988). Pulse oximetry: Analysis of theory, technology, and practice. Journal of Clinical Monitoring, 4(4), 290–301.CrossRef
65.
Zurück zum Zitat Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557–1558.CrossRef Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557–1558.CrossRef
66.
Zurück zum Zitat Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., et al. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.CrossRef Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., et al. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.CrossRef
67.
Zurück zum Zitat Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., et al. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRef Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., et al. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRef
68.
Zurück zum Zitat Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3), 808–812.CrossRef Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3), 808–812.CrossRef
69.
Zurück zum Zitat Trindade, I. G., Martins, F., Miguel, R., & Silva, M. S. (2014). Design and integration of wearable devices in textiles. Sensors & Transducers, 183(12), 42. Trindade, I. G., Martins, F., Miguel, R., & Silva, M. S. (2014). Design and integration of wearable devices in textiles. Sensors & Transducers, 183(12), 42.
70.
Zurück zum Zitat Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71(12), 2333–2348.CrossRef Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71(12), 2333–2348.CrossRef
71.
Zurück zum Zitat Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12(5), 5996–6022.CrossRef Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12(5), 5996–6022.CrossRef
72.
Zurück zum Zitat Kurihara, Y., Watanabe, K., & Yoneyama, M. (2011). Estimation of walking exercise intensity using 3-D acceleration sensor. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 495–500. Kurihara, Y., Watanabe, K., & Yoneyama, M. (2011). Estimation of walking exercise intensity using 3-D acceleration sensor. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)42(4), 495–500.
73.
Zurück zum Zitat Erasala, N., & Yen, D. C. (2002). Bluetooth technology: A strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 24(3), 193–206.CrossRef Erasala, N., & Yen, D. C. (2002). Bluetooth technology: A strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 24(3), 193–206.CrossRef
74.
Zurück zum Zitat Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer Communications, 30(7), 1655–1695. Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.
75.
Zurück zum Zitat Kim, T., Lee, H., & Chung, Y. (2010). Advanced universal remote controller for home automation and security. IEEE Transactions on Consumer Electronics, 56(4), 2537–2542.CrossRef Kim, T., Lee, H., & Chung, Y. (2010). Advanced universal remote controller for home automation and security. IEEE Transactions on Consumer Electronics, 56(4), 2537–2542.CrossRef
76.
Zurück zum Zitat Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.CrossRef Hirt, W. (2003). Ultra-wideband radio technology: Overview and future research. Computer Communications, 26(1), 46–52.CrossRef
77.
Zurück zum Zitat Ghamari, M., Janko, B., Sherratt, R., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.CrossRef Ghamari, M., Janko, B., Sherratt, R., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.CrossRef
78.
Zurück zum Zitat Ren, Y., Werner, R., Pazzi, N., & Boukerche, A. (2010). Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications, 17(1), 59–65.CrossRef Ren, Y., Werner, R., Pazzi, N., & Boukerche, A. (2010). Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications, 17(1), 59–65.CrossRef
81.
Zurück zum Zitat Sreedevi, P., & Venkateswarlu, S. (2022). An efficient intra-cluster data aggregation and finding the best sink location in WSN using EEC-MA-PSOGA approach. International Journal of Communication Systems, 35, e5110.CrossRef Sreedevi, P., & Venkateswarlu, S. (2022). An efficient intra-cluster data aggregation and finding the best sink location in WSN using EEC-MA-PSOGA approach. International Journal of Communication Systems, 35, e5110.CrossRef
Metadaten
Titel
Wireless Sensor Networks in Healthcare System: A Systematic Review
verfasst von
Hradesh Kumar
Publikationsdatum
29.03.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10954-2

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt