Skip to main content
Erschienen in: Wireless Personal Communications 2/2024

28.03.2024

Cluster-Based Multi-attribute Routing Protocol for Underwater Acoustic Sensor Networks

verfasst von: Pradeep Nazareth, B. R. Chandavarkar

Erschienen in: Wireless Personal Communications | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underwater Acoustic Sensor Networks play a significant role in various underwater applications. There are several challenges in underwater communications like high bit-error-rate, low bandwidth, high energy consumption, void-node during routing, etc. Handling void-node during routing is a major challenge in underwater routing. There are well-known void-handling protocols like Energy-efficient Void-Aware Geographic Routing protocol, HydroCast, etc. However, these routing protocols require all neighboring nodes must be a part of the cluster which increases the overhead on clustering, or void-node has a part of the routing. This paper proposes an underwater routing protocol referred to as Cluster-based Multi-Attribute Routing (CMAR) to overcome these issues. It is a sender-based, opportunistic underwater routing protocol. CMAR uses the Technique for Order of Preference by Similarity to Ideal Solution to evaluate the suitability of the neighboring nodes and the basis for clustering process initialization. Through MATLAB simulations, the performance of the CMAR is compared with HydroCast in terms of the number of nodes selected in the forwarding set, number of clusters formed, number of times void-node becomes part of routing and transmission reliability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158–175.CrossRef Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158–175.CrossRef
2.
Zurück zum Zitat Pompili, D., Melodia, T., & Akyildiz, I.F.(2006). Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks. In: Proceedings of the 12th annual international conference on mobile computing and networking, (pp. 298–309) Pompili, D., Melodia, T., & Akyildiz, I.F.(2006). Routing algorithms for delay-insensitive and delay-sensitive applications in underwater sensor networks. In: Proceedings of the 12th annual international conference on mobile computing and networking, (pp. 298–309)
3.
Zurück zum Zitat Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.CrossRef Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2015). A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 34, 144–156.CrossRef
4.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.CrossRef
5.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef
6.
Zurück zum Zitat Coutinho, R.W., Vieira, L.F., & Loureiro, A.A. (2013) Movement assisted-topology control and geographic routing protocol for underwater sensor networks. In Proceedings of the 16th ACM international conference on modeling, analysis & simulation of wireless and mobile systems, (pp. 189–196) Coutinho, R.W., Vieira, L.F., & Loureiro, A.A. (2013) Movement assisted-topology control and geographic routing protocol for underwater sensor networks. In Proceedings of the 16th ACM international conference on modeling, analysis & simulation of wireless and mobile systems, (pp. 189–196)
7.
Zurück zum Zitat Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.CrossRef Kheirabadi, M. T., & Mohamad, M. M. (2013). Greedy routing in underwater acoustic sensor networks: A survey. International Journal of Distributed Sensor Networks, 9(7), 701834.CrossRef
8.
Zurück zum Zitat Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.CrossRef Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys & Tutorials, 19(2), 800–827.CrossRef
9.
Zurück zum Zitat Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), 4218.CrossRef Alasarpanahi, H., Ayatollahitafti, V., & Gandomi, A. (2020). Energy-efficient void avoidance geographic routing protocol for underwater sensor networks. International Journal of Communication Systems, 33(6), 4218.CrossRef
10.
Zurück zum Zitat Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009) Void avoidance in three-dimensional mobile underwater sensor networks. In International conference on wireless algorithms, systems, and applications, (pp. 305–314) . Springer Xie, P., Zhou, Z., Peng, Z., Cui, J.-H., & Shi, Z. (2009) Void avoidance in three-dimensional mobile underwater sensor networks. In International conference on wireless algorithms, systems, and applications, (pp. 305–314) . Springer
11.
Zurück zum Zitat Boukerche, A., & Darehshoorzadeh, A. (2014). Opportunistic routing in wireless networks: Models, algorithms, and classifications. ACM Computing Surveys (CSUR), 47(2), 1–36.CrossRef Boukerche, A., & Darehshoorzadeh, A. (2014). Opportunistic routing in wireless networks: Models, algorithms, and classifications. ACM Computing Surveys (CSUR), 47(2), 1–36.CrossRef
13.
Zurück zum Zitat Coutinho, R.W., Boukerche, A., Vieira, L.F., & Loureiro, A.A. (2015) Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In Proceedings of the 18th ACM international conference on modeling, analysis and simulation of wireless and mobile systems, (pp. 125–132) Coutinho, R.W., Boukerche, A., Vieira, L.F., & Loureiro, A.A. (2015) Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In Proceedings of the 18th ACM international conference on modeling, analysis and simulation of wireless and mobile systems, (pp. 125–132)
14.
Zurück zum Zitat Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F., Cui, J.-H., Gerla, M., & Kim, K. (2015). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.CrossRef Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F., Cui, J.-H., Gerla, M., & Kim, K. (2015). Hydrocast: Pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347.CrossRef
15.
Zurück zum Zitat Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef
16.
Zurück zum Zitat Zhu, Y., Tian, D., & Yan, F. (2020). Effectiveness of entropy weight method in decision-making. Mathematical Problems in Engineering, 2020, 1–5. Zhu, Y., Tian, D., & Yan, F. (2020). Effectiveness of entropy weight method in decision-making. Mathematical Problems in Engineering, 2020, 1–5.
17.
Zurück zum Zitat Foubert, B., & Mitton, N. (2021). RODENT: a flexible TOPSIS based routing protocol for multi-technology devices in wireless sensor networks. ITU Journal on Future and Evolving Technologies, 2(1). Foubert, B., & Mitton, N. (2021). RODENT: a flexible TOPSIS based routing protocol for multi-technology devices in wireless sensor networks. ITU Journal on Future and Evolving Technologies, 2(1).
18.
Zurück zum Zitat Barbeau, M., Blouin, S., Cervera, G., Garcia-Alfaro, J., & Kranakis, E. (2015). Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE), (pp. 1544–1549) IEEE Barbeau, M., Blouin, S., Cervera, G., Garcia-Alfaro, J., & Kranakis, E. (2015). Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE), (pp. 1544–1549) IEEE
19.
Zurück zum Zitat Nazareth, P., & Chandavarkar, B. (2022). Location-free void avoidance routing protocol for underwater acoustic sensor networks. Wireless Personal Communications, 123, 1–26.CrossRef Nazareth, P., & Chandavarkar, B. (2022). Location-free void avoidance routing protocol for underwater acoustic sensor networks. Wireless Personal Communications, 123, 1–26.CrossRef
20.
Zurück zum Zitat Ghoreyshi, S.M., Shahrabi, A., & Boutaleb, T. (2015) An inherently void avoidance routing protocol for underwater sensor networks. In: 2015 International symposium on wireless communication systems (ISWCS) Ghoreyshi, S.M., Shahrabi, A., & Boutaleb, T. (2015) An inherently void avoidance routing protocol for underwater sensor networks. In: 2015 International symposium on wireless communication systems (ISWCS)
21.
Zurück zum Zitat Basagni, S., Petrioli, C., Petroccia, R., & Spaccini, D. (2015). CARP: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34, 92–104.CrossRef Basagni, S., Petrioli, C., Petroccia, R., & Spaccini, D. (2015). CARP: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34, 92–104.CrossRef
22.
Zurück zum Zitat Han, G., Liu, L., Bao, N., Jiang, J., Zhang, W., & Rodrigues, J. J. (2017). AREP: An asymmetric link-based reverse routing protocol for underwater acoustic sensor networks. Journal of Network and Computer Applications, 92, 51–58.CrossRef Han, G., Liu, L., Bao, N., Jiang, J., Zhang, W., & Rodrigues, J. J. (2017). AREP: An asymmetric link-based reverse routing protocol for underwater acoustic sensor networks. Journal of Network and Computer Applications, 92, 51–58.CrossRef
23.
Zurück zum Zitat Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.CrossRef Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.CrossRef
24.
Zurück zum Zitat Xie, P., Cui, J.-H., & Lao, L. (2006). Vbf: Vector-based forwarding protocol for underwater sensor networks. In International conference on research in networking, (pp. 1216–1221) Springer Xie, P., Cui, J.-H., & Lao, L. (2006). Vbf: Vector-based forwarding protocol for underwater sensor networks. In International conference on research in networking, (pp. 1216–1221) Springer
25.
Zurück zum Zitat Yu, H., Yao, N., & Liu, J. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.CrossRef Yu, H., Yao, N., & Liu, J. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.CrossRef
27.
Zurück zum Zitat Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.CrossRef
29.
Zurück zum Zitat Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater WSNS. Sensors, 18(9), 3038.CrossRef Javaid, N., Majid, A., Sher, A., Khan, W. Z., & Aalsalem, M. Y. (2018). Avoiding void holes and collisions with reliable and interference-aware routing in underwater WSNS. Sensors, 18(9), 3038.CrossRef
31.
Zurück zum Zitat Zhang, Y., Zhang, Z., Chen, L., & Wang, X. (2021). Reinforcement learning-based opportunistic routing protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 70(3), 2756–2770.CrossRef Zhang, Y., Zhang, Z., Chen, L., & Wang, X. (2021). Reinforcement learning-based opportunistic routing protocol for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 70(3), 2756–2770.CrossRef
32.
Zurück zum Zitat Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of Topsis applications. Expert Systems with applications, 39(17), 13051–13069.CrossRef Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of Topsis applications. Expert Systems with applications, 39(17), 13051–13069.CrossRef
33.
Zurück zum Zitat Chandavarkar, B. R., & Guddeti, R. M. R. (2016). Simplified and improved multiple attributes alternate ranking method for vertical handover decision in heterogeneous wireless networks. Computer Communications, 83, 81–97.CrossRef Chandavarkar, B. R., & Guddeti, R. M. R. (2016). Simplified and improved multiple attributes alternate ranking method for vertical handover decision in heterogeneous wireless networks. Computer Communications, 83, 81–97.CrossRef
34.
Zurück zum Zitat Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2018). Data normalisation techniques in decision making: Case study with topsis method. International Journal of Information and Decision Sciences, 10(1), 19–38.CrossRef Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2018). Data normalisation techniques in decision making: Case study with topsis method. International Journal of Information and Decision Sciences, 10(1), 19–38.CrossRef
35.
Zurück zum Zitat Chandavarkar, B. R., & Guddeti, R. M. R. (2015). Simplified and improved analytical hierarchy process aid for selecting candidate network in an overlay heterogeneous networks. Wireless Personal Communications, 83(4), 2593–2606.CrossRef Chandavarkar, B. R., & Guddeti, R. M. R. (2015). Simplified and improved analytical hierarchy process aid for selecting candidate network in an overlay heterogeneous networks. Wireless Personal Communications, 83(4), 2593–2606.CrossRef
36.
Zurück zum Zitat Wang, L., & Kuo, G.-S.G. (2012). Mathematical modeling for network selection in heterogeneous wireless networks-a tutorial. IEEE Communications Surveys & Tutorials, 15(1), 271–292.CrossRef Wang, L., & Kuo, G.-S.G. (2012). Mathematical modeling for network selection in heterogeneous wireless networks-a tutorial. IEEE Communications Surveys & Tutorials, 15(1), 271–292.CrossRef
37.
Zurück zum Zitat Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50.CrossRef Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50.CrossRef
38.
Zurück zum Zitat Thi Kim, O. T., Nguyen, V. D., & Hong, C. S. (2014). Which network simulation tool is better for simulating vehicular ad hoc network? Proceedings of the Korean Information Science Conference, 134(1), 930–932. Thi Kim, O. T., Nguyen, V. D., & Hong, C. S. (2014). Which network simulation tool is better for simulating vehicular ad hoc network? Proceedings of the Korean Information Science Conference, 134(1), 930–932.
39.
Zurück zum Zitat Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.CrossRef
40.
Zurück zum Zitat O’Rourke, M., Basha, E., Detweiler, C (2012) Multi-modal communications in underwater sensor networks using depth adjustment. In Proceedings of the 7th international conference on underwater networks & systems, (pp. 1–5) O’Rourke, M., Basha, E., Detweiler, C (2012) Multi-modal communications in underwater sensor networks using depth adjustment. In Proceedings of the 7th international conference on underwater networks & systems, (pp. 1–5)
41.
Zurück zum Zitat Nazareth, P., & Chandavarkar, B. R. (2019). E-var: Enhanced void avoidance routing algorithm for underwater acoustic sensor networks. IET Wireless Sensor Systems, 9(6), 389–398.CrossRef Nazareth, P., & Chandavarkar, B. R. (2019). E-var: Enhanced void avoidance routing algorithm for underwater acoustic sensor networks. IET Wireless Sensor Systems, 9(6), 389–398.CrossRef
42.
Zurück zum Zitat Thyagarajan, J., & Kulanthaivelu, S. (2021). A joint hybrid corona based opportunistic routing design with quasi mobile sink for IOT based wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(1), 991–1009.CrossRef Thyagarajan, J., & Kulanthaivelu, S. (2021). A joint hybrid corona based opportunistic routing design with quasi mobile sink for IOT based wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(1), 991–1009.CrossRef
Metadaten
Titel
Cluster-Based Multi-attribute Routing Protocol for Underwater Acoustic Sensor Networks
verfasst von
Pradeep Nazareth
B. R. Chandavarkar
Publikationsdatum
28.03.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-10926-6

Weitere Artikel der Ausgabe 2/2024

Wireless Personal Communications 2/2024 Zur Ausgabe

Neuer Inhalt