Skip to main content

2021 | OriginalPaper | Buchkapitel

A Review of the Application of CNN-Based Computer Vision in Civil Infrastructure Maintenance

verfasst von : Ruying Cai, Jingru Li, Geng Li, Dongdong Tang, Yi Tan

Erschienen in: Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computer-vision and deep-learning techniques are being increasingly applied to the maintenance of civil infrastructure, such as inspecting, monitoring, and assessing infrastructure conditions, which overcome time-consuming and laborious compared with traditional technology. In this paper, the research progress of deep learning, the developments of convolutional neural network (CNN)-based computer vision in improving accuracy, reliability and generalized object detection capability and its application in civil infrastructure maintenance are reviewed. The main objectives are as follows: (1) clarify the application of deep learning in computer vision to help researchers systematically understand deep learning; (2) review the application of computer vision in civil infrastructure maintenance to help researchers pay more attention to its advantages; (3) encourage relevant personnel to use this research as a reference, take deep learning as an important method at the forefront of engineering management, generate more innovations in the construction field, and promote the development of the construction industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Perez, H., Tah, J. H. M., & Mosavi, A. (2019). Deep learning for detecting building defects using convolutional neural networks. Sensors, 19(16), 22.CrossRef Perez, H., Tah, J. H. M., & Mosavi, A. (2019). Deep learning for detecting building defects using convolutional neural networks. Sensors, 19(16), 22.CrossRef
2.
Zurück zum Zitat Voulodimos, A., et al. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 13. Voulodimos, A., et al. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 13.
3.
Zurück zum Zitat Zhong, B. T., et al. (2019). Mapping computer vision research in construction: Developments, knowledge gaps and implications for research. Automation in Construction, 107. Zhong, B. T., et al. (2019). Mapping computer vision research in construction: Developments, knowledge gaps and implications for research. Automation in Construction, 107.
4.
Zurück zum Zitat Zhou, S. L., & Song, W. (2020). Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Automation in Construction, 114, 17.CrossRef Zhou, S. L., & Song, W. (2020). Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Automation in Construction, 114, 17.CrossRef
5.
Zurück zum Zitat Cheng, J. C. P., & Wang, M. Z. (2018). Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Automation in Construction, 95, 155–171.CrossRef Cheng, J. C. P., & Wang, M. Z. (2018). Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Automation in Construction, 95, 155–171.CrossRef
6.
Zurück zum Zitat Wang, M. Z., & Cheng, J. C. P. (2020). A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Computer-Aided Civil and Infrastructure Engineering, 35(2), 162–177.CrossRef Wang, M. Z., & Cheng, J. C. P. (2020). A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Computer-Aided Civil and Infrastructure Engineering, 35(2), 162–177.CrossRef
7.
Zurück zum Zitat Cha, Y. J., Choi, W., & Buyukozturk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361–378.CrossRef Cha, Y. J., Choi, W., & Buyukozturk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361–378.CrossRef
8.
Zurück zum Zitat Lee, K. H., Byun, N., & Shin, D. (2020). A damage localization approach for Rahmen Bridge based on convolutional neural network. Ksce Journal of Civil Engineering, 24(1), 1–9.CrossRef Lee, K. H., Byun, N., & Shin, D. (2020). A damage localization approach for Rahmen Bridge based on convolutional neural network. Ksce Journal of Civil Engineering, 24(1), 1–9.CrossRef
9.
Zurück zum Zitat Zhang, J., et al. (2020). Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Automation in Construction, 113, 11.CrossRef Zhang, J., et al. (2020). Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Automation in Construction, 113, 11.CrossRef
10.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the Acm, 60(6), 84–90.CrossRef Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the Acm, 60(6), 84–90.CrossRef
11.
Zurück zum Zitat Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in cats visual cortex. Journal of Physiology-London, 160(1), 106. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in cats visual cortex. Journal of Physiology-London, 160(1), 106.
12.
Zurück zum Zitat Wang, M. Z., & Cheng, J. C. P. (2018). Development and improvement of deep learning based automated defect detection for sewer pipe inspection using faster R-CNN. In I. F. C. Smith & B. Domer (Eds.), Advanced computing strategies for engineering, Pt Ii (pp. 171–192). Springer International Publishing Ag.CrossRef Wang, M. Z., & Cheng, J. C. P. (2018). Development and improvement of deep learning based automated defect detection for sewer pipe inspection using faster R-CNN. In I. F. C. Smith & B. Domer (Eds.), Advanced computing strategies for engineering, Pt Ii (pp. 171–192). Springer International Publishing Ag.CrossRef
13.
Zurück zum Zitat Guo, Y. M., et al. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.CrossRef Guo, Y. M., et al. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.CrossRef
14.
Zurück zum Zitat Wu, H., Liu, Q., & Liu, X. D. (2019). A review on deep learning approaches to image classification and object segmentation. Cmc-Computers Materials and Continua, 60(2), 575–597.CrossRef Wu, H., Liu, Q., & Liu, X. D. (2019). A review on deep learning approaches to image classification and object segmentation. Cmc-Computers Materials and Continua, 60(2), 575–597.CrossRef
15.
Zurück zum Zitat Simonyan, K., & Zisserman, A. J. A. E.-P. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. Simonyan, K., & Zisserman, A. J. A. E.-P. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:​1409.​1556.
16.
Zurück zum Zitat Szegedy, C., et al. (2015). Going deeper with convolutions. 2015 Ieee Conference on Computer Vision and Pattern Recognition (pp. 1–9). Ieee. Szegedy, C., et al. (2015). Going deeper with convolutions. 2015 Ieee Conference on Computer Vision and Pattern Recognition (pp. 1–9). Ieee.
17.
Zurück zum Zitat Kaiming, H., et al. (2015). Deep residual learning for image recognition (pp. 12). Kaiming, H., et al. (2015). Deep residual learning for image recognition (pp. 12).
18.
Zurück zum Zitat Wang, N. N., et al. (2018). Damage classification for masonry historic structures using convolutional neural networks based on still images. Computer-Aided Civil and Infrastructure Engineering, 33(12), 1073–1089.CrossRef Wang, N. N., et al. (2018). Damage classification for masonry historic structures using convolutional neural networks based on still images. Computer-Aided Civil and Infrastructure Engineering, 33(12), 1073–1089.CrossRef
19.
Zurück zum Zitat Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement (pp. 1–6). Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement (pp. 1–6).
20.
Zurück zum Zitat Redmon, J., Farhadi, A., & IEEE. (2017). YOLO9000: Better, faster, stronger. In 30th Ieee Conference on Computer Vision and Pattern Recognition (pp. 6517–6525). Redmon, J., Farhadi, A., & IEEE. (2017). YOLO9000: Better, faster, stronger. In 30th Ieee Conference on Computer Vision and Pattern Recognition (pp. 6517–6525).
21.
Zurück zum Zitat Redmon, J., et al. (2016). You only look once: unified, real-time object detection. In 2016 Ieee Conference on Computer Vision and Pattern Recognition (pp. 779–788). Redmon, J., et al. (2016). You only look once: unified, real-time object detection. In 2016 Ieee Conference on Computer Vision and Pattern Recognition (pp. 779–788).
23.
Zurück zum Zitat Ren, S. Q., et al. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. Ieee Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.CrossRef Ren, S. Q., et al. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. Ieee Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.CrossRef
24.
Zurück zum Zitat Kumar, S. S., et al. (2020). Deep learning-based automated detection of sewer defects in CCTV videos. Journal of Computing in Civil Engineering, 34(1), 13.CrossRef Kumar, S. S., et al. (2020). Deep learning-based automated detection of sewer defects in CCTV videos. Journal of Computing in Civil Engineering, 34(1), 13.CrossRef
25.
Zurück zum Zitat Li, L.J., et al. (2019). Dam surface crack detection based on deep learning. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (pp. 738–743). Assoc Computing Machinery. Li, L.J., et al. (2019). Dam surface crack detection based on deep learning. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (pp. 738–743). Assoc Computing Machinery.
26.
Zurück zum Zitat Zhang, C. B., Chang, C. C., & Jamshidi, M. (2020). Concrete bridge surface damage detection using a single-stage detector. Computer-Aided Civil and Infrastructure Engineering, 35(4), 389–409.CrossRef Zhang, C. B., Chang, C. C., & Jamshidi, M. (2020). Concrete bridge surface damage detection using a single-stage detector. Computer-Aided Civil and Infrastructure Engineering, 35(4), 389–409.CrossRef
27.
Zurück zum Zitat Zhang, C. B., & Chang, C. C. (2019). Surface damage detection for concrete bridges using single-stage convolutional neural networks. In P. Fromme & Z. Su (Eds.), Health Monitoring of Structural and Biological Systems (pp. Xiii). Spie-Int Soc Optical Engineering. Zhang, C. B., & Chang, C. C. (2019). Surface damage detection for concrete bridges using single-stage convolutional neural networks. In P. Fromme & Z. Su (Eds.), Health Monitoring of Structural and Biological Systems (pp. Xiii). Spie-Int Soc Optical Engineering.
28.
Zurück zum Zitat Mondal, T. G., et al. (2020). Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance. Structural Control and Health Monitoring, 27(4), 15. Mondal, T. G., et al. (2020). Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance. Structural Control and Health Monitoring, 27(4), 15.
29.
Zurück zum Zitat Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.CrossRef Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.CrossRef
30.
Zurück zum Zitat Li, Y., et al. (2017). Fully convolutional instance-aware semantic segmentation. 30th Ieee Conference on Computer Vision and Pattern Recognition (pp. 4438–4446). Ieee. Li, Y., et al. (2017). Fully convolutional instance-aware semantic segmentation. 30th Ieee Conference on Computer Vision and Pattern Recognition (pp. 4438–4446). Ieee.
31.
Zurück zum Zitat Guo, L., et al. (2020). Automatic crack distress classification from concrete surface images using a novel deep-width network architecture. Neurocomputing, 397, 383–392.CrossRef Guo, L., et al. (2020). Automatic crack distress classification from concrete surface images using a novel deep-width network architecture. Neurocomputing, 397, 383–392.CrossRef
32.
Zurück zum Zitat Zhang, X. X., Rajan, D., & Story, B. (2019). Concrete crack detection using context-aware deep semantic segmentation network. Computer-Aided Civil and Infrastructure Engineering, 34(11), 951–971.CrossRef Zhang, X. X., Rajan, D., & Story, B. (2019). Concrete crack detection using context-aware deep semantic segmentation network. Computer-Aided Civil and Infrastructure Engineering, 34(11), 951–971.CrossRef
33.
Zurück zum Zitat Kim, B., & Cho, S. (2019). Image-based concrete crack assessment using mask and region-based convolutional neural network. Structural Control and Health Monitoring, 26(8), 15. Kim, B., & Cho, S. (2019). Image-based concrete crack assessment using mask and region-based convolutional neural network. Structural Control and Health Monitoring, 26(8), 15.
34.
Zurück zum Zitat Kim, B., & Cho, S. (2018). Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors, 18(10), 18.CrossRef Kim, B., & Cho, S. (2018). Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors, 18(10), 18.CrossRef
35.
Zurück zum Zitat Xie, Q., et al. (2019). Automatic detection and classification of sewer defects via hierarchical deep learning. Ieee Transactions on Automation Science and Engineering, 16(4), 1836–1847.CrossRef Xie, Q., et al. (2019). Automatic detection and classification of sewer defects via hierarchical deep learning. Ieee Transactions on Automation Science and Engineering, 16(4), 1836–1847.CrossRef
36.
Zurück zum Zitat Browne, M., & Ghidary, S. S. (2003). Convolutional neural networks for image processing: An application in robot vision. In T. D. Gedeon & L. C. C. Fung (Eds.), Ai 2003: Advances in artificial intelligence (pp. 641–652). Springer. Browne, M., & Ghidary, S. S. (2003). Convolutional neural networks for image processing: An application in robot vision. In T. D. Gedeon & L. C. C. Fung (Eds.), Ai 2003: Advances in artificial intelligence (pp. 641–652). Springer.
37.
Zurück zum Zitat Hassan, S. I., et al. (2019). Underground sewer pipe condition assessment based on convolutional neural networks. Automation in Construction, 106, 12.CrossRef Hassan, S. I., et al. (2019). Underground sewer pipe condition assessment based on convolutional neural networks. Automation in Construction, 106, 12.CrossRef
38.
Zurück zum Zitat Meijer, D., et al. (2019). A defect classification methodology for sewer image sets with convolutional neural networks. Automation in Construction, 104, 281–298.CrossRef Meijer, D., et al. (2019). A defect classification methodology for sewer image sets with convolutional neural networks. Automation in Construction, 104, 281–298.CrossRef
39.
Zurück zum Zitat Yin, X. F., et al. (2020). A deep learning-based framework for an automated defect detection system for sewer pipes. Automation in Construction, 109, 17.CrossRef Yin, X. F., et al. (2020). A deep learning-based framework for an automated defect detection system for sewer pipes. Automation in Construction, 109, 17.CrossRef
40.
Zurück zum Zitat Kim, I. H., et al. (2018). Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors, 18(6), 14.CrossRef Kim, I. H., et al. (2018). Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors, 18(6), 14.CrossRef
41.
Zurück zum Zitat Xu, H. Y., et al. (2019). Automatic bridge crack detection using a convolutional neural network. Applied Sciences-Basel, 9(14), 14. Xu, H. Y., et al. (2019). Automatic bridge crack detection using a convolutional neural network. Applied Sciences-Basel, 9(14), 14.
42.
Zurück zum Zitat Jiang, S., & Zhang, J. (2020). Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Computer-Aided Civil and Infrastructure Engineering, 35(6), 549–564.CrossRef Jiang, S., & Zhang, J. (2020). Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Computer-Aided Civil and Infrastructure Engineering, 35(6), 549–564.CrossRef
43.
Zurück zum Zitat Dinh, K., Gucunski, N., & Duong, T. H. (2018). An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Automation in Construction, 89, 292–298.CrossRef Dinh, K., Gucunski, N., & Duong, T. H. (2018). An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Automation in Construction, 89, 292–298.CrossRef
44.
Zurück zum Zitat Jung, H. J., et al. (2019). Bridge inspection and condition assessment using unmanned aerial vehicles (UAVs): Major challenges and solutions from a practical perspective. Smart Structures and Systems, 24(5), 669–681. Jung, H. J., et al. (2019). Bridge inspection and condition assessment using unmanned aerial vehicles (UAVs): Major challenges and solutions from a practical perspective. Smart Structures and Systems, 24(5), 669–681.
45.
Zurück zum Zitat Kang, D. H., & Cha, Y. J. (2018). Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Computer-Aided Civil and Infrastructure Engineering, 33(10), 885–902.CrossRef Kang, D. H., & Cha, Y. J. (2018). Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Computer-Aided Civil and Infrastructure Engineering, 33(10), 885–902.CrossRef
46.
Zurück zum Zitat Liu, H., & Zhang, Y. F. Bridge condition rating data modeling using deep learning algorithm. Structure and Infrastructure Engineering, 14. Liu, H., & Zhang, Y. F. Bridge condition rating data modeling using deep learning algorithm. Structure and Infrastructure Engineering, 14.
47.
Zurück zum Zitat Modarres, C., et al. (2018). Convolutional neural networks for automated damage recognition and damage type identification. Structural Control and Health Monitoring, 25(10), 17.CrossRef Modarres, C., et al. (2018). Convolutional neural networks for automated damage recognition and damage type identification. Structural Control and Health Monitoring, 25(10), 17.CrossRef
48.
Zurück zum Zitat Zhu, J. S., & Song, J. B. (2020). An intelligent classification model for surface defects on cement concrete bridges. Applied Sciences-Basel, 10(3), 15. Zhu, J. S., & Song, J. B. (2020). An intelligent classification model for surface defects on cement concrete bridges. Applied Sciences-Basel, 10(3), 15.
49.
Zurück zum Zitat Chun, C., & Ryu, S. K. (2019). Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors, 19(24), 15.CrossRef Chun, C., & Ryu, S. K. (2019). Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors, 19(24), 15.CrossRef
50.
Zurück zum Zitat Augustauskas, R., & Lipnickas, A. (2020). Improved pixel-level pavement-defect segmentation using a deep autoencoder. Sensors, 20(9), 21.CrossRef Augustauskas, R., & Lipnickas, A. (2020). Improved pixel-level pavement-defect segmentation using a deep autoencoder. Sensors, 20(9), 21.CrossRef
51.
Zurück zum Zitat Eguchi, M., et al. (2019). A simplified method of detecting spot surface defects by using Quasi-3D data from a conventional road profiler. Transportation Research Record, 2673(11), 377–387.CrossRef Eguchi, M., et al. (2019). A simplified method of detecting spot surface defects by using Quasi-3D data from a conventional road profiler. Transportation Research Record, 2673(11), 377–387.CrossRef
52.
Zurück zum Zitat Cao, W. M., Liu, Q. F., & He, Z. Q. (2020). Review of pavement defect detection methods. Ieee Access, 8, 14531–14544.CrossRef Cao, W. M., Liu, Q. F., & He, Z. Q. (2020). Review of pavement defect detection methods. Ieee Access, 8, 14531–14544.CrossRef
53.
Zurück zum Zitat Zhu, S. P., et al. (2007). An image segmentation algorithm in image processing based on threshold segmentation. In Sitis 2007: Proceedings of the International Conference on Signal Image Technologies & Internet Based Systems (pp. 673+). Ieee Computer Soc. Zhu, S. P., et al. (2007). An image segmentation algorithm in image processing based on threshold segmentation. In Sitis 2007: Proceedings of the International Conference on Signal Image Technologies & Internet Based Systems (pp. 673+). Ieee Computer Soc.
54.
Zurück zum Zitat Huili, Z., Guofeng, Q., & Xingjian, W. (2010). Improvement of canny algorithm based on pavement edge detection. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing (CISP 2010) (pp. 964–967). Huili, Z., Guofeng, Q., & Xingjian, W. (2010). Improvement of canny algorithm based on pavement edge detection. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing (CISP 2010) (pp. 964–967).
55.
Zurück zum Zitat Zhou, Y., et al. (2016). Seed-based approach for automated crack detection from pavement images. Transportation Research Record, 2589, 162–171.CrossRef Zhou, Y., et al. (2016). Seed-based approach for automated crack detection from pavement images. Transportation Research Record, 2589, 162–171.CrossRef
56.
Zurück zum Zitat Qu, Z., et al. (2020). Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model. Ieee Access, 8, 54564–54573.CrossRef Qu, Z., et al. (2020). Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model. Ieee Access, 8, 54564–54573.CrossRef
57.
Zurück zum Zitat Riid, A., et al. (2019). Pavement distress detection with deep learning using the orthoframes acquired by a mobile mapping system. Applied Sciences-Basel, 9(22), 22. Riid, A., et al. (2019). Pavement distress detection with deep learning using the orthoframes acquired by a mobile mapping system. Applied Sciences-Basel, 9(22), 22.
58.
Zurück zum Zitat Cha, Y. J., et al. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9), 731–747.CrossRef Cha, Y. J., et al. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9), 731–747.CrossRef
59.
Zurück zum Zitat Deng, L., et al. (2020). Region-based CNN method with deformable modules for visually classifying concrete cracks. Applied Sciences-Basel, 10(7), 18. Deng, L., et al. (2020). Region-based CNN method with deformable modules for visually classifying concrete cracks. Applied Sciences-Basel, 10(7), 18.
60.
Zurück zum Zitat Lee, J., et al. (2019). Learning to detect cracks on damaged concrete surfaces using two-branched convolutional neural network. Sensors, 19(21), 18.CrossRef Lee, J., et al. (2019). Learning to detect cracks on damaged concrete surfaces using two-branched convolutional neural network. Sensors, 19(21), 18.CrossRef
61.
Zurück zum Zitat Li, S. Y., & Zhao, X. F. (2019). Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Advances in Civil Engineering, 2019, 12. Li, S. Y., & Zhao, X. F. (2019). Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Advances in Civil Engineering, 2019, 12.
62.
Zurück zum Zitat Wei, F. J., et al. (2019). Instance-level recognition and quantification for concrete surface bughole based on deep learning. Automation in Construction, 107, 13.CrossRef Wei, F. J., et al. (2019). Instance-level recognition and quantification for concrete surface bughole based on deep learning. Automation in Construction, 107, 13.CrossRef
63.
Zurück zum Zitat Ryu, E., et al. (2020). Automated detection of surface cracks and numerical correlation with thermal-structural behaviors of fire damaged concrete beams. International Journal of Concrete Structures and Materials, 14(1), 12.CrossRef Ryu, E., et al. (2020). Automated detection of surface cracks and numerical correlation with thermal-structural behaviors of fire damaged concrete beams. International Journal of Concrete Structures and Materials, 14(1), 12.CrossRef
64.
Zurück zum Zitat Ye, X. W., Jin, T., & Chen, P. Y. (2019). Structural crack detection using deep learning-based fully convolutional networks. Advances in Structural Engineering, 22(16), 3412–3419.CrossRef Ye, X. W., Jin, T., & Chen, P. Y. (2019). Structural crack detection using deep learning-based fully convolutional networks. Advances in Structural Engineering, 22(16), 3412–3419.CrossRef
65.
Zurück zum Zitat Wei, S. Y., Bao, Y. Q., & Li, H. (2020). Optimal policy for structure maintenance: A deep reinforcement learning framework. Structural Safety, 83, 13.CrossRef Wei, S. Y., Bao, Y. Q., & Li, H. (2020). Optimal policy for structure maintenance: A deep reinforcement learning framework. Structural Safety, 83, 13.CrossRef
66.
Zurück zum Zitat Perry, B. J., et al. (2020). Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement, 164, 14.CrossRef Perry, B. J., et al. (2020). Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement, 164, 14.CrossRef
67.
Zurück zum Zitat Liu, L. L., et al. (2017). Transfer learning on convolutional activation feature as applied to a building quality assessment robot. International Journal of Advanced Robotic Systems, 14(3), 12.CrossRef Liu, L. L., et al. (2017). Transfer learning on convolutional activation feature as applied to a building quality assessment robot. International Journal of Advanced Robotic Systems, 14(3), 12.CrossRef
68.
Zurück zum Zitat Fang, W. L., et al. (2020). Computer vision for behaviour-based safety in construction: A review and future directions. Advanced Engineering Informatics, 43, 13.CrossRef Fang, W. L., et al. (2020). Computer vision for behaviour-based safety in construction: A review and future directions. Advanced Engineering Informatics, 43, 13.CrossRef
69.
Zurück zum Zitat Fang, W. L., et al. (2020). Computer vision applications in construction safety assurance. Automation in Construction, 110, 10.CrossRef Fang, W. L., et al. (2020). Computer vision applications in construction safety assurance. Automation in Construction, 110, 10.CrossRef
Metadaten
Titel
A Review of the Application of CNN-Based Computer Vision in Civil Infrastructure Maintenance
verfasst von
Ruying Cai
Jingru Li
Geng Li
Dongdong Tang
Yi Tan
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-3587-8_42