Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

03.08.2020 | Review Paper

A review on feature-mapping methods for structural optimization

verfasst von: Fabian Wein, Peter D. Dunning, Julián A. Norato

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this review we identify a new category of methods for implementing and solving structural optimization problems that has emerged over the last 20 years, which we propose to call feature-mapping methods. The two defining aspects of these methods are that the design is parameterized by a high-level geometric description and that features are mapped onto a non-body-fitted mesh for analysis. One motivation for using these methods is to gain better control over the geometry to, for example, facilitate imposing direct constraints on geometric features, while avoiding issues with re-meshing. The review starts by providing some key definitions and then examines the ingredients that these methods use to map geometric features onto a fixed mesh. One of these ingredients corresponds to the mechanism for mapping the geometry of a single feature onto a fixed analysis grid, from which an ersatz material or an immersed-boundary approach is used for the analysis. For the former case, which we refer to as the pseudo-density approach, a test problem is formulated to investigate aspects of the material interpolation, boundary smoothing, and numerical integration. We also review other ingredients of feature-mapping techniques, including approaches for combining features (which are required to perform topology optimization) and methods for imposing a minimum separation distance among features. A literature review of feature-mapping methods is provided for shape optimization, combined feature/free-form optimization, and topology optimization. Finally, we discuss potential future research directions for feature-mapping methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The latter work seems to be a more detailed journal version of the former, hence from hereon we only reference the latter.
 
Literatur
Zurück zum Zitat Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in ss methods. J Comput Phys 148(1):2–22MathSciNetMATH Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in ss methods. J Comput Phys 148(1):2–22MathSciNetMATH
Zurück zum Zitat Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidiscip Optim 61(1):187–205 Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidiscip Optim 61(1):187–205
Zurück zum Zitat Bakhtiarinejad M, Lee S, Joo J (2017) Component allocation and supporting frame topology optimization using global search algorithm and morphing mesh. Struct Multidiscip Optim 55(1):297–315MathSciNet Bakhtiarinejad M, Lee S, Joo J (2017) Component allocation and supporting frame topology optimization using global search algorithm and morphing mesh. Struct Multidiscip Optim 55(1):297–315MathSciNet
Zurück zum Zitat Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) conference and 14th AIAA/ISSMO multidisciplinary analysis and optimization conference. https://doi.org/10.2514/6.2012-5485 Bell B, Norato J, Tortorelli D (2012) A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) conference and 14th AIAA/ISSMO multidisciplinary analysis and optimization conference. https://​doi.​org/​10.​2514/​6.​2012-5485
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620MATH Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5):601–620MATH
Zurück zum Zitat Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering 17(4):043,001 Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering 17(4):043,001
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202 Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Archive of Applievd Mechanics 69(9):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Archive of Applievd Mechanics 69(9):635–654MATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer
Zurück zum Zitat Bloomenthal J, Wyvill B (1990) Interactive techniques for implicit modeling. In: ACM SIGGRAPH Computer graphics, vol 24. ACM, pp 109–116 Bloomenthal J, Wyvill B (1990) Interactive techniques for implicit modeling. In: ACM SIGGRAPH Computer graphics, vol 24. ACM, pp 109–116
Zurück zum Zitat Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44(3):247–267MATH Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44(3):247–267MATH
Zurück zum Zitat Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of optimal topologies for crashworthiness with the evolutionary level set method. International Journal of Crashworthiness 23(4):395–416 Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of optimal topologies for crashworthiness with the evolutionary level set method. International Journal of Crashworthiness 23(4):395–416
Zurück zum Zitat Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267–290MathSciNetMATH Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267–290MathSciNetMATH
Zurück zum Zitat Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MathSciNetMATH Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(3):313–346MathSciNetMATH
Zurück zum Zitat Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 505–514 Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, pp 505–514
Zurück zum Zitat Cheng L, Liu J, Liang X, To AC (2018) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439MathSciNetMATH Cheng L, Liu J, Liang X, To AC (2018) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439MathSciNetMATH
Zurück zum Zitat Chu S, Gao L, Xiao M, Li H (2019) Design of sandwich panels with truss cores using explicit topology optimization. Compos Struct 210:892–905 Chu S, Gao L, Xiao M, Li H (2019) Design of sandwich panels with truss cores using explicit topology optimization. Compos Struct 210:892–905
Zurück zum Zitat Coniglio S (2019) Optimisation topologique à formalisme Eulérien et Lagrangien appliquée à la conception d’un ensemble propulsif. PhD thesis, Université de Toulouse Coniglio S (2019) Optimisation topologique à formalisme Eulérien et Lagrangien appliquée à la conception d’un ensemble propulsif. PhD thesis, Université de Toulouse
Zurück zum Zitat Cui T, Sun Z, Liu C, Li L, Cui R, Guo X (2020) Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach. Acta Mechanica Sinica 36 (2):412–421MathSciNet Cui T, Sun Z, Liu C, Li L, Cui R, Guo X (2020) Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach. Acta Mechanica Sinica 36 (2):412–421MathSciNet
Zurück zum Zitat Deng H, To AC (2020) Linear and nonlinear topology optimization design with projection-based ground structure method (P-GSM). Int J Numer Methods Eng 121(11):2437–2461 Deng H, To AC (2020) Linear and nonlinear topology optimization design with projection-based ground structure method (P-GSM). Int J Numer Methods Eng 121(11):2437–2461
Zurück zum Zitat Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Sci China Technol Sci 59(6):839–851 Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Sci China Technol Sci 59(6):839–851
Zurück zum Zitat Deng J, Pedersen CB, Chen W (2019) Connected morphable components-based multiscale topology optimization. Front Mech Eng 14(2):129–140 Deng J, Pedersen CB, Chen W (2019) Connected morphable components-based multiscale topology optimization. Front Mech Eng 14(2):129–140
Zurück zum Zitat van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNet van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNet
Zurück zum Zitat Du B, Yao W, Zhao Y, Chen X (2019) A moving morphable voids approach for topology optimization with closed B-splines. J Mech Design 141(8):081,401 Du B, Yao W, Zhao Y, Chen X (2019) A moving morphable voids approach for topology optimization with closed B-splines. J Mech Design 141(8):081,401
Zurück zum Zitat Du B, Zhao Y, Yao W, Wang X, Huo S (2020) Multiresolution isogeometric topology optimisation using moving morphable voids. Comput Model Eng Sci 122(3):1119–1140 Du B, Zhao Y, Yao W, Wang X, Huo S (2020) Multiresolution isogeometric topology optimisation using moving morphable voids. Comput Model Eng Sci 122(3):1119–1140
Zurück zum Zitat Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51 Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51
Zurück zum Zitat Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed b-spline boundary curves. Struct Multidiscip Optim 61(3):963–982MathSciNet Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed b-spline boundary curves. Struct Multidiscip Optim 61(3):963–982MathSciNet
Zurück zum Zitat Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387– 408MathSciNetMATH Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387– 408MathSciNetMATH
Zurück zum Zitat Garcia MJ, Gonzalez CA (2004) Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidiscip Optim 26(1-2):92–98 Garcia MJ, Gonzalez CA (2004) Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidiscip Optim 26(1-2):92–98
Zurück zum Zitat Guest JK, Zhu M (2012) Casting and milling restrictions in topology optimization via projection-based algorithms. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 913–920 Guest JK, Zhu M (2012) Casting and milling restrictions in topology optimization via projection-based algorithms. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 913–920
Zurück zum Zitat Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46(5):631–645MathSciNetMATH Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46(5):631–645MathSciNetMATH
Zurück zum Zitat Guo X, Du Z, Cheng G, Ni C (2013) Symmetry properties in structural optimization: some extensions. Struct Multidiscip Optim 47(6):783–794MATH Guo X, Du Z, Cheng G, Ni C (2013) Symmetry properties in structural optimization: some extensions. Struct Multidiscip Optim 47(6):783–794MATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81(8):081,009 Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech 81(8):081,009
Zurück zum Zitat Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetMATH Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetMATH
Zurück zum Zitat Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63MathSciNetMATH Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63MathSciNetMATH
Zurück zum Zitat Ha SH, Guest JK (2014) Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct Multidiscip Optim 50(1):65–80 Ha SH, Guest JK (2014) Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct Multidiscip Optim 50(1):65–80
Zurück zum Zitat Haftka RT, Grandhi RV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106MathSciNetMATH Haftka RT, Grandhi RV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106MathSciNetMATH
Zurück zum Zitat Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33-35):3523–3540MathSciNetMATH Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33-35):3523–3540MathSciNetMATH
Zurück zum Zitat Haslinger J, Mäkinen R (2003) Introduction to shape optimization: theory, vol 7. SIAM Haslinger J, Mäkinen R (2003) Introduction to shape optimization: theory, vol 7. SIAM
Zurück zum Zitat Hoang VN, Jang GW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Eng 317:153–173MathSciNetMATH Hoang VN, Jang GW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Eng 317:153–173MathSciNetMATH
Zurück zum Zitat Hoang VN, Nguyen NL, Nguyen-Xuan H (2020a) Topology optimization of coated structure using moving morphable sandwich bars. Struct Multidiscip Optim 61(2):491–506 Hoang VN, Nguyen NL, Nguyen-Xuan H (2020a) Topology optimization of coated structure using moving morphable sandwich bars. Struct Multidiscip Optim 61(2):491–506
Zurück zum Zitat Hoang VN, Nguyen NL, Tran P, Qian M, Nguyen-Xuan H (2020b) Adaptive concurrent topology optimization of cellular composites for additive manufacturing. JOM 72(6):2378–2390 Hoang VN, Nguyen NL, Tran P, Qian M, Nguyen-Xuan H (2020b) Adaptive concurrent topology optimization of cellular composites for additive manufacturing. JOM 72(6):2378–2390
Zurück zum Zitat Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K, Hu P (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712MathSciNetMATH Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K, Hu P (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 326:694–712MathSciNetMATH
Zurück zum Zitat Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18(5):661–673MATH Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18(5):661–673MATH
Zurück zum Zitat Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH
Zurück zum Zitat Kasolis F, Wadbro E, Berggren M (2012) Fixed-mesh curvature-parameterized shape optimization of an acoustic horn. Struct Multidiscip Optim 46(5):727–738MATH Kasolis F, Wadbro E, Berggren M (2012) Fixed-mesh curvature-parameterized shape optimization of an acoustic horn. Struct Multidiscip Optim 46(5):727–738MATH
Zurück zum Zitat Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Design 140(11):111,401 Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Design 140(11):111,401
Zurück zum Zitat Kazemi H, Vaziri A, Norato J (2019) Topology optimization of multi-material lattices for maximal bulk modulus. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 59186. American Society of Mechanical Engineers, pp V02AT03A052 Kazemi H, Vaziri A, Norato J (2019) Topology optimization of multi-material lattices for maximal bulk modulus. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 59186. American Society of Mechanical Engineers, pp V02AT03A052
Zurück zum Zitat Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng 363:112,895MathSciNetMATH Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng 363:112,895MathSciNetMATH
Zurück zum Zitat Kim DH, Lee SB, Kwank BM, Kim HG, Lowther DA (2008) Smooth boundary topology optimization for electrostatic problems through the combination of shape and topological design sensitivities. IEEE Trans Magn 44(6):1002–1005 Kim DH, Lee SB, Kwank BM, Kim HG, Lowther DA (2008) Smooth boundary topology optimization for electrostatic problems through the combination of shape and topological design sensitivities. IEEE Trans Magn 44(6):1002–1005
Zurück zum Zitat Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for Heaviside enriched XFEM. Comput Mech 54(5):1357–1374MathSciNetMATH Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for Heaviside enriched XFEM. Comput Mech 54(5):1357–1374MathSciNetMATH
Zurück zum Zitat Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996 Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9):985–996
Zurück zum Zitat Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271–285MathSciNet Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271–285MathSciNet
Zurück zum Zitat Lee SB, Kwak BM, Kim IY (2007) Smooth boundary topology optimization using B-spline and hole generation. International Journal of CAD/CAM 7(1):11–20 Lee SB, Kwak BM, Kim IY (2007) Smooth boundary topology optimization using B-spline and hole generation. International Journal of CAD/CAM 7(1):11–20
Zurück zum Zitat Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011,004 Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011,004
Zurück zum Zitat Li B, Liu H, Zheng S (2018) Multidisciplinary topology optimization for reduction of sloshing in aircraft fuel tanks based on SPH simulation. Struct Multidiscip Optim 58(4):1719–1736MathSciNet Li B, Liu H, Zheng S (2018) Multidisciplinary topology optimization for reduction of sloshing in aircraft fuel tanks based on SPH simulation. Struct Multidiscip Optim 58(4):1719–1736MathSciNet
Zurück zum Zitat Li B, Xuan C, Liu G, Hong J (2019) Generating constructal networks for area-to-point conduction problems via moving morphable components approach. J Mech Design 141(5):051,401 Li B, Xuan C, Liu G, Hong J (2019) Generating constructal networks for area-to-point conduction problems via moving morphable components approach. J Mech Design 141(5):051,401
Zurück zum Zitat Li L, Wang MY, Wei P (2012) XFEM Schemes for level set based structural optimization. Frontiers of Mechanical Engineering 7(4):335–356 Li L, Wang MY, Wei P (2012) XFEM Schemes for level set based structural optimization. Frontiers of Mechanical Engineering 7(4):335–356
Zurück zum Zitat Li Y, Wei P, Ma H (2017) Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material. Int J Heat Mass Transfer 113:1059–1069 Li Y, Wei P, Ma H (2017) Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material. Int J Heat Mass Transfer 113:1059–1069
Zurück zum Zitat Lian R, Jing S, He Z, Shi Z (2020) Geometric boundary feature extraction method based on moving morphable components (MMC) for topology optomization results. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, vol 1, pp 2299–2303 Lian R, Jing S, He Z, Shi Z (2020) Geometric boundary feature extraction method based on moving morphable components (MMC) for topology optomization results. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, vol 1, pp 2299–2303
Zurück zum Zitat Lin HY, Rayasam M, Subbarayan G (2015) ISOCOMP: Unified geometric and material composition for optimal topology design. Struct Multidiscip Optim 51(3):687–703MathSciNet Lin HY, Rayasam M, Subbarayan G (2015) ISOCOMP: Unified geometric and material composition for optimal topology design. Struct Multidiscip Optim 51(3):687–703MathSciNet
Zurück zum Zitat Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X (2018) An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim 58(6):2455–2479MathSciNet Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X (2018) An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim 58(6):2455–2479MathSciNet
Zurück zum Zitat Liu D, Du J (2019) A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imag 38(12):2937–2948 Liu D, Du J (2019) A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imag 38(12):2937–2948
Zurück zum Zitat Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161–175 Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161–175
Zurück zum Zitat Liu J, Ma YS (2015) 3d level-set topology optimization: a machining feature-based approach. Structural and Multidisciplinary Optimization 52(3):563–582MathSciNet Liu J, Ma YS (2015) 3d level-set topology optimization: a machining feature-based approach. Structural and Multidisciplinary Optimization 52(3):563–582MathSciNet
Zurück zum Zitat Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC et al (2018b) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483 Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC et al (2018b) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483
Zurück zum Zitat Liu P, Kang Z (2018) Integrated topology optimization of multi-component structures considering connecting interface behavior. Comput Methods Appl Mech Eng 341:851–887MathSciNetMATH Liu P, Kang Z (2018) Integrated topology optimization of multi-component structures considering connecting interface behavior. Comput Methods Appl Mech Eng 341:851–887MathSciNetMATH
Zurück zum Zitat Liu T, Wang S, Li B, Gao L (2014) A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Struct Multidiscip Optim 50(2):253–273MathSciNet Liu T, Wang S, Li B, Gao L (2014) A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Struct Multidiscip Optim 50(2):253–273MathSciNet
Zurück zum Zitat Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat conduction using generative design algorithms. Struct Multidiscip Optim 55(3):1063–1077MathSciNet Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat conduction using generative design algorithms. Struct Multidiscip Optim 55(3):1063–1077MathSciNet
Zurück zum Zitat Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197MathSciNet Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197MathSciNet
Zurück zum Zitat Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87 Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39(2):71–87
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150MathSciNetMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1):131–150MathSciNetMATH
Zurück zum Zitat Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28-30):3163–3177MATH Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28-30):3163–3177MATH
Zurück zum Zitat Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-based shape optimization scheme using an interface-enriched generalized fem. Comput Methods Appl Mech Eng 296:1–17MathSciNetMATH Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-based shape optimization scheme using an interface-enriched generalized fem. Comput Methods Appl Mech Eng 296:1–17MathSciNetMATH
Zurück zum Zitat Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539 Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539
Zurück zum Zitat Niu B, Wadbro E (2019) On equal-width length-scale control in topology optimization. Struct Multidiscip Optim 59(4):1321– 1334 Niu B, Wadbro E (2019) On equal-width length-scale control in topology optimization. Struct Multidiscip Optim 59(4):1321– 1334
Zurück zum Zitat Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidiscip Optim 55(6):2323–2338MathSciNet Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidiscip Optim 55(6):2323–2338MathSciNet
Zurück zum Zitat Noël L, Miegroet LV, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107(8):669– 695MathSciNetMATH Noël L, Miegroet LV, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107(8):669– 695MathSciNetMATH
Zurück zum Zitat Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. International Journal for Numerical Methods in Engineering 60(14):2289–2312MathSciNetMATH Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. International Journal for Numerical Methods in Engineering 60(14):2289–2312MathSciNetMATH
Zurück zum Zitat Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327MathSciNetMATH Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327MathSciNetMATH
Zurück zum Zitat Norato JA (2018) Topology optimization with supershapes. Struct Multidiscip Optim 58(2):415–434MathSciNet Norato JA (2018) Topology optimization with supershapes. Struct Multidiscip Optim 58(2):415–434MathSciNet
Zurück zum Zitat Overvelde JT (2012) The moving node approach in topology optimization. Master’s thesis, Delft University of Technology Overvelde JT (2012) The moving node approach in topology optimization. Master’s thesis, Delft University of Technology
Zurück zum Zitat Pollini N, Amir O (2020) Mixed projection-and density-based topology optimization with applications to structural assemblies. Struct Multidiscip Optim 61(2):687–710MathSciNet Pollini N, Amir O (2020) Mixed projection-and density-based topology optimization with applications to structural assemblies. Struct Multidiscip Optim 61(2):687–710MathSciNet
Zurück zum Zitat Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35MathSciNetMATH Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35MathSciNetMATH
Zurück zum Zitat Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Design Struct Mach 32(2):165–193 Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Design Struct Mach 32(2):165–193
Zurück zum Zitat Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2019) Kriging-assisted topology optimization of crash structures. Comput Methods Appl Mech Eng 348:730–752MathSciNetMATH Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F (2019) Kriging-assisted topology optimization of crash structures. Comput Methods Appl Mech Eng 348:730–752MathSciNetMATH
Zurück zum Zitat Rozvany GI (2011) On symmetry and non-uniqueness in exact topology optimization. Struct Multidiscip Optim 43(3):297–317MathSciNetMATH Rozvany GI (2011) On symmetry and non-uniqueness in exact topology optimization. Struct Multidiscip Optim 43(3):297–317MathSciNetMATH
Zurück zum Zitat Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3-4):250–252 Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3-4):250–252
Zurück zum Zitat Saxena A (2011) Are circular shaped masks adequate in adaptive mask overlay topology synthesis method? J Mech Design 133(1):011,001 Saxena A (2011) Are circular shaped masks adequate in adaptive mask overlay topology synthesis method? J Mech Design 133(1):011,001
Zurück zum Zitat Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49-52):3270–3296MathSciNetMATH Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49-52):3270–3296MathSciNetMATH
Zurück zum Zitat Shan P (2008) Optimal embedding objects in the topology design of structure. Master thesis, Dalian University of Technology, (in Chinese) Shan P (2008) Optimal embedding objects in the topology design of structure. Master thesis, Dalian University of Technology, (in Chinese)
Zurück zum Zitat Shapiro V (2002) Solid modeling. Handbook of computer aided geometric design 20:473–518MathSciNet Shapiro V (2002) Solid modeling. Handbook of computer aided geometric design 20:473–518MathSciNet
Zurück zum Zitat Sharma A (2017) Advances in design and optimization using immersed boundary methods. Phd Thesis, University of Colorado Boulder Sharma A (2017) Advances in design and optimization using immersed boundary methods. Phd Thesis, University of Colorado Boulder
Zurück zum Zitat Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with Heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408MathSciNet Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with Heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408MathSciNet
Zurück zum Zitat Sharpe C, Seepersad CC, Watts S, Tortorelli D (2018) Design of mechanical metamaterials via constrained Bayesian optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02AT03A029–V02AT03A029 Sharpe C, Seepersad CC, Watts S, Tortorelli D (2018) Design of mechanical metamaterials via constrained Bayesian optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02AT03A029–V02AT03A029
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48 (6):1031–1055MathSciNet
Zurück zum Zitat Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNet Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNet
Zurück zum Zitat Smith HA, Norato J (2019a) A geometry projection method for the design exploration of wing-box structures. In: AIAA Scitech 2019 forum, p 2353 Smith HA, Norato J (2019a) A geometry projection method for the design exploration of wing-box structures. In: AIAA Scitech 2019 forum, p 2353
Zurück zum Zitat Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. In: Introduction to shape optimization. Springer, pp 5–12 Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. In: Introduction to shape optimization. Springer, pp 5–12
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATH
Zurück zum Zitat Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5):661–670MATH Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5):661–670MATH
Zurück zum Zitat Stolpe M (2016) Truss optimization with discrete design variables: a critical review. Struct Multidiscip Optim 53(2):349–374MathSciNet Stolpe M (2016) Truss optimization with discrete design variables: a critical review. Struct Multidiscip Optim 53(2):349–374MathSciNet
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124 Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124
Zurück zum Zitat Sun J, Tian Q, Hu H (2018a) Topology optimization of a three-dimensional flexible multibody system via moving morphable components. Journal of Computational and Nonlinear Dynamics 13(2):021,010 Sun J, Tian Q, Hu H (2018a) Topology optimization of a three-dimensional flexible multibody system via moving morphable components. Journal of Computational and Nonlinear Dynamics 13(2):021,010
Zurück zum Zitat Sun J, Tian Q, Hu H, Pedersen NL (2018b) Simultaneous topology and size optimization of a 3d variable-length structure described by the ale–ancf. Mech Mach Theory 129:80–105 Sun J, Tian Q, Hu H, Pedersen NL (2018b) Simultaneous topology and size optimization of a 3d variable-length structure described by the ale–ancf. Mech Mach Theory 129:80–105
Zurück zum Zitat Sun J, Tian Q, Hu H, Pedersen NL (2018c) Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dynamics 93(2):413–441 Sun J, Tian Q, Hu H, Pedersen NL (2018c) Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF. Nonlinear Dynamics 93(2):413–441
Zurück zum Zitat Sun J, Tian Q, Hu H, Pedersen NL (2019) Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. J Sound Vib 448:83–107 Sun J, Tian Q, Hu H, Pedersen NL (2019) Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. J Sound Vib 448:83–107
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH
Zurück zum Zitat Tahhan M (2019) Topology optimization of space frames via geometry projection. Master’s thesis, University of Connecticut Tahhan M (2019) Topology optimization of space frames via geometry projection. Master’s thesis, University of Connecticut
Zurück zum Zitat Takalloozadeh M, Yoon GH (2017) Implementation of topological derivative in the moving morphable components approach. Finite Elem Anal Des 134:16–26 Takalloozadeh M, Yoon GH (2017) Implementation of topological derivative in the moving morphable components approach. Finite Elem Anal Des 134:16–26
Zurück zum Zitat Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. International Journal for Numerical Methods in Engineering 58(9):1321– 1346MATH Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. International Journal for Numerical Methods in Engineering 58(9):1321– 1346MATH
Zurück zum Zitat Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications, vol 112. American Mathematical Soc Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods, and applications, vol 112. American Mathematical Soc
Zurück zum Zitat Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438 Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-FEM and level set description. Struct Multidiscip Optim 33(4-5):425–438
Zurück zum Zitat Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-d structures. Comput Mech 54(1):133–150MathSciNetMATH Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-d structures. Comput Mech 54(1):133–150MathSciNetMATH
Zurück zum Zitat Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33):2976–2988MathSciNetMATH Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33):2976–2988MathSciNetMATH
Zurück zum Zitat Wang F, Jensen JS, Sigmund O (2012) High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics and Nanostructures-Fundamentals and Applications 10(4):378–388 Wang F, Jensen JS, Sigmund O (2012) High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics and Nanostructures-Fundamentals and Applications 10(4):378–388
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O, Jensen JS (2014a) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472 Wang F, Lazarov BS, Sigmund O, Jensen JS (2014a) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472
Zurück zum Zitat Wang MY, Zong H, Ma Q, Tian Y, Zhou M (2019a) Cellular level set in B-splines (CLIBS): a method for modeling and topology optimization of cellular structures. Comput Methods Appl Mech Eng 349:378–404 Wang MY, Zong H, Ma Q, Tian Y, Zhou M (2019a) Cellular level set in B-splines (CLIBS): a method for modeling and topology optimization of cellular structures. Comput Methods Appl Mech Eng 349:378–404
Zurück zum Zitat Wang N, Yang Y (2009) Structural design optimization subjected to uncertainty using fat Bezieŕ curve. Comput Methods Appl Mech Eng 199(1-4):210–219MATH Wang N, Yang Y (2009) Structural design optimization subjected to uncertainty using fat Bezieŕ curve. Comput Methods Appl Mech Eng 199(1-4):210–219MATH
Zurück zum Zitat Wang R, Zhang X, Zhu B (2019b) Imposing minimum length scale in moving morphable component MMC-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693 Wang R, Zhang X, Zhu B (2019b) Imposing minimum length scale in moving morphable component MMC-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693
Zurück zum Zitat Wang Y, Luo Z, Zhang X, Kang Z (2014b) Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures 23(4):045,024 Wang Y, Luo Z, Zhang X, Kang Z (2014b) Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures 23(4):045,024
Zurück zum Zitat Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. Int J Numer Methods Eng 112(11):1564–1588MathSciNet Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. Int J Numer Methods Eng 112(11):1564–1588MathSciNet
Zurück zum Zitat Wei P, Wang MY, Xing X (2010) A study on x-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719 Wei P, Wang MY, Xing X (2010) A study on x-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719
Zurück zum Zitat Wein F, Stingl M (2018) A combined parametric shape optimization and ersatz material approach. Struct Multidiscip Optim 57(3):1297–1315MathSciNet Wein F, Stingl M (2018) A combined parametric shape optimization and ersatz material approach. Struct Multidiscip Optim 57(3):1297–1315MathSciNet
Zurück zum Zitat Weiss BM, Hamel JM, Ganter MA, Storti DW (2018) Data-driven additive manufacturing constraints for topology optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 2A. American Society of Mechanical Engineers, p V02AT03A031 Weiss BM, Hamel JM, Ganter MA, Storti DW (2018) Data-driven additive manufacturing constraints for topology optimization. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 2A. American Society of Mechanical Engineers, p V02AT03A031
Zurück zum Zitat Wormser M, Wein F, Stingl M, Körner C (2017) Design and additive manufacturing of 3d phononic band gap structures based on gradient based optimization. Materials 10(10):1125 Wormser M, Wein F, Stingl M, Körner C (2017) Design and additive manufacturing of 3d phononic band gap structures based on gradient based optimization. Materials 10(10):1125
Zurück zum Zitat Xia L, Zhu J, Zhang W (2012a) Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems. Comput Methods Appl Mech Eng 241:142–154 Xia L, Zhu J, Zhang W (2012a) Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems. Comput Methods Appl Mech Eng 241:142–154
Zurück zum Zitat Xia L, Zhu J, Zhang W (2012b) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45(5):643–655 Xia L, Zhu J, Zhang W (2012b) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45(5):643–655
Zurück zum Zitat Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102MathSciNetMATH Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102MathSciNetMATH
Zurück zum Zitat Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61–90MathSciNetMATH Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61–90MathSciNetMATH
Zurück zum Zitat Xie X, Zheng H, Jonckheere S, Desmet W (2019) Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models. Comput Methods Appl Mech Eng 355:591–613MathSciNetMATH Xie X, Zheng H, Jonckheere S, Desmet W (2019) Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models. Comput Methods Appl Mech Eng 355:591–613MathSciNetMATH
Zurück zum Zitat Xie X, Wang S, Xu M, Jiang N, Wang Y (2020a) A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 360:112,696 Xie X, Wang S, Xu M, Jiang N, Wang Y (2020a) A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 360:112,696
Zurück zum Zitat Xie X, Wang S, Ye M, Xia Z, Zhao W, Jiang N, Xu M (2020b) Isogeometric topology optimization based on energy penalization for symmetric structure. Front Mech Engi 15(1):100–122 Xie X, Wang S, Ye M, Xia Z, Zhao W, Jiang N, Xu M (2020b) Isogeometric topology optimization based on energy penalization for symmetric structure. Front Mech Engi 15(1):100–122
Zurück zum Zitat Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818MathSciNetMATH Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019) Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 344:798–818MathSciNetMATH
Zurück zum Zitat Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree structures for heat conduction. Int J Heat Mass Transfer 122:660–680 Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree structures for heat conduction. Int J Heat Mass Transfer 122:660–680
Zurück zum Zitat Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the x-FEM for computational fracture mechanics. Appl Math Model 33(12):4269–4282MathSciNetMATH Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the x-FEM for computational fracture mechanics. Appl Math Model 33(12):4269–4282MathSciNetMATH
Zurück zum Zitat Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal–fluid problem using the MMC-based approach. Struct Multidiscip Optim 60(1):151–165MathSciNet Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal–fluid problem using the MMC-based approach. Struct Multidiscip Optim 60(1):151–165MathSciNet
Zurück zum Zitat Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89MathSciNetMATH Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89MathSciNetMATH
Zurück zum Zitat Zhang S, Norato JA (2017) Optimal design of panel reinforcements with ribs made of plates. J Mech Design 139(8):081,403 Zhang S, Norato JA (2017) Optimal design of panel reinforcements with ribs made of plates. J Mech Design 139(8):081,403
Zurück zum Zitat Zhang S, Norato JA (2018) Finding better local optima in topology optimization via tunneling. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02BT03A014–V02BT03A014 Zhang S, Norato JA (2018) Finding better local optima in topology optimization via tunneling. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp V02BT03A014–V02BT03A014
Zurück zum Zitat Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190 Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190
Zurück zum Zitat Zhang S, Gain AL, Norato JA (2017a) Stress-based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 325:1–21 Zhang S, Gain AL, Norato JA (2017a) Stress-based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 325:1–21
Zurück zum Zitat Zhang S, Gain AL, Norato JA (2018a) A geometry projection method for the topology optimization of curved plate structures with placement bounds. Int J Numer Methods Eng 114(2):128–146 Zhang S, Gain AL, Norato JA (2018a) A geometry projection method for the topology optimization of curved plate structures with placement bounds. Int J Numer Methods Eng 114(2):128–146
Zurück zum Zitat Zhang S, Gain AL, Norato JA (2020a) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112,930 Zhang S, Gain AL, Norato JA (2020a) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112,930
Zurück zum Zitat Zhang W, Zhu J (2006) A new finite-circle family method for optimal multi-component packing design. WCCM VII, Los Angeles Zhang W, Zhu J (2006) A new finite-circle family method for optimal multi-component packing design. WCCM VII, Los Angeles
Zurück zum Zitat Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. J Mech Design 133(10):104,503 Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. J Mech Design 133(10):104,503
Zurück zum Zitat Zhang W, Zhong W, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313MathSciNetMATH Zhang W, Zhong W, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng 290:290–313MathSciNetMATH
Zurück zum Zitat Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Eng 311:327–355 Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Eng 311:327–355
Zurück zum Zitat Zhang W, Yuan J, Zhang J, Guo X (2016c) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260 Zhang W, Yuan J, Zhang J, Guo X (2016c) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260
Zurück zum Zitat Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017b) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614 Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017b) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614
Zurück zum Zitat Zhang W, Li D, Yuan J, Song J, Guo X (2017c) A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59(4):647– 665 Zhang W, Li D, Yuan J, Song J, Guo X (2017c) A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59(4):647– 665
Zurück zum Zitat Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011,011 Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011,011
Zurück zum Zitat Zhang W, Zhao L, Gao T, Cai S (2017e) Topology optimization with closed B-splines and Boolean operations. Comput Methods Appl Mech Eng 315:652–670 Zhang W, Zhao L, Gao T, Cai S (2017e) Topology optimization with closed B-splines and Boolean operations. Comput Methods Appl Mech Eng 315:652–670
Zurück zum Zitat Zhang W, Zhou J, Zhu Y, Guo X (2017f) Structural complexity control in topology optimization via moving morphable component (MMC) approach. Struct Multidiscip Optim 56(3):535–552 Zhang W, Zhou J, Zhu Y, Guo X (2017f) Structural complexity control in topology optimization via moving morphable component (MMC) approach. Struct Multidiscip Optim 56(3):535–552
Zurück zum Zitat Zhang W, Zhou Y, Zhu J (2017g) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313 Zhang W, Zhou Y, Zhu J (2017g) A comprehensive study of feature definitions with solids and voids for topology optimization. Comput Methods Appl Mech Eng 325:289–313
Zurück zum Zitat Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413 Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413
Zurück zum Zitat Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018c) A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J Mech Design 140 (11):111,404 Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018c) A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J Mech Design 140 (11):111,404
Zurück zum Zitat Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018d) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Methods Eng 113 (11):1653–1675 Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018d) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Methods Eng 113 (11):1653–1675
Zurück zum Zitat Zhang W, Jiang S, Liu C, Li D, Kang P, Youn SK, Guo X (2020b) Stress-related topology optimization of shell structures using IGA/TSA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 366:113,036 Zhang W, Jiang S, Liu C, Li D, Kang P, Youn SK, Guo X (2020b) Stress-related topology optimization of shell structures using IGA/TSA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 366:113,036
Zurück zum Zitat Zhang W, Li D, Kang P, Guo X, Youn SK (2020c) Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 360:112,685 Zhang W, Li D, Kang P, Guo X, Youn SK (2020c) Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 360:112,685
Zurück zum Zitat Zhou M, Wang MY (2013) Engineering feature design for level set based structural optimization. Comput Aided Des 45(12):1524–1537MathSciNet Zhou M, Wang MY (2013) Engineering feature design for level set based structural optimization. Comput Aided Des 45(12):1524–1537MathSciNet
Zurück zum Zitat Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32MathSciNetMATH Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32MathSciNetMATH
Zurück zum Zitat Zhou Y, Zhang W, Zhu J (2019) Concurrent shape and topology optimization involving design-dependent pressure loads using implicit B-spline curves. Int J Numer Methods Eng 118(9):495–518MathSciNet Zhou Y, Zhang W, Zhu J (2019) Concurrent shape and topology optimization involving design-dependent pressure loads using implicit B-spline curves. Int J Numer Methods Eng 118(9):495–518MathSciNet
Zurück zum Zitat Zhu B, Chen Q, Wang R, Zhang X (2018) Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. J Mech Des 140(8):081,403 Zhu B, Chen Q, Wang R, Zhang X (2018) Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. J Mech Des 140(8):081,403
Zurück zum Zitat Zhu J, Zhang W, Beckers P, Chen Y, Guo Z (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36(1):29–41MathSciNetMATH Zhu J, Zhang W, Beckers P, Chen Y, Guo Z (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36(1):29–41MathSciNetMATH
Zurück zum Zitat Zhu JH, Gao HH, Zhang WH, Zhou Y (2015) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51(2):397–407 Zhu JH, Gao HH, Zhang WH, Zhou Y (2015) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51(2):397–407
Zurück zum Zitat Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21– 45MathSciNet Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21– 45MathSciNet
Metadaten
Titel
A review on feature-mapping methods for structural optimization
verfasst von
Fabian Wein
Peter D. Dunning
Julián A. Norato
Publikationsdatum
03.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02649-6

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.