Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

20.08.2020 | Research Paper

Topology optimization with local stress constraints: a stress aggregation-free approach

verfasst von: Fernando V. Senhora, Oliver Giraldo-Londoño, Ivan F. M. Menezes, Glaucio H. Paulino

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a consistent topology optimization formulation for mass minimization with local stress constraints by means of the augmented Lagrangian method. To solve problems with a large number of constraints in an effective way, we modify both the penalty and objective function terms of the augmented Lagrangian function. The modification of the penalty term leads to consistent solutions under mesh refinement and that of the objective function term drives the mass minimization towards black and white solutions. In addition, we introduce a piecewise vanishing constraint, which leads to results that outperform those obtained using relaxed stress constraints. Although maintaining the local nature of stress requires a large number of stress constraints, the formulation presented here requires only one adjoint vector, which results in an efficient sensitivity evaluation. Several 2D and 3D topology optimization problems, each with a large number of local stress constraints, are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A variation of the vanishing constraints is used in the present study to solve stress-constrained topology optimization problems.
 
2
According to Cheng and Guo (1997), the restriction on the variable lower bound to be ε2 is not necessary. They demonstrated that, in order to guarantee convergence, the lower bound on the design variables has to be a higher order term smaller than ε as \(\varepsilon \rightarrow 0.\)
 
3
However, the stress-constrained problem is not well-behaved because, given the degenerate nature of the constraints, the Lagrange multiplier set associated with a stationary point is unbounded. For optimization problems of this type, Izmailov et al. (2012) and Andreani et al. (2012) showed that the AL method exhibits global convergence properties, which suggests that this method is a viable alternative to solve stress-constrained topology optimization problems.
 
4
Notice the modular structure developed for the stress-constrained topology optimization problem. Due to this feature, different constitutive behaviors can be incorporated in the present computational mechanics framework.
 
5
As an example, suppose that for a given AL step we have g = − 0.5, λ = 1, and μ = 1. For this combination of constraint values and AL parameters, we have that, \(h=\max \limits (g,-~\lambda /\mu )=\max \limits (-~0.5, -~1)=-~0.5\), which yields \(P=\lambda h+\frac {1}{2}\mu h^{2}=-~3/8<0\), where P is the penalization term of the AL function.
 
6
The piecewise constraint given by (17) is C1(z) because, for \(\sigma _{j}^{\text {v}}/\sigma _{\lim } >1\), \(g_{j}(\textbf {z})={\rho ^{p}_{j}}(\sigma _{j}^{\text {v}}/\sigma _{\lim }-1)^{2}\), which is the finite composition of \(C^{\infty }\) functions in this domain, and for \(\sigma _{j}^{\text {v}}/\sigma _{\lim } <1\), gj(z) = 0, which is also \(C^{\infty }\). Moreover, when \(\sigma _{j}^{\text {v}}/\sigma _{\lim }=1\), both the value of \({\rho ^{p}_{j}}(\sigma _{j}^{\text {v}}/\sigma _{\lim }-1)^{2}\) and its first derivative with respect to z are equal to zero, which is the same value of gj(z) and its derivative with respect to z, when \(\sigma _{j}^{\text {v}}/\sigma _{\lim }<1\).
 
7
Because the interphase penalization F(z) in (19) is only used when we apply continuation on the filter radius, we have decided not to include it in the current derivation.
 
8
Stagnation is reached when the average change in the design variables between two consecutive iterations is smaller than a given tolerance, i.e., when Change < tol (cf. Algorithm 2) and the constraints are yet not satisfied.
 
9
When two consecutive filter matrices have similar topology, it indicates that the material distribution between two consecutive iterations has not changed significantly. Alternatively, we could use a criterion based on \(\left \|\textbf {P}_{i+1}-\textbf {P}_{i} \right \|\) to stop the filter reduction, but this means storing both Pi and Pi+ 1, which requires a substantial amount of RAM memory.
 
10
The function defined in Eq. (36) is not unique, and other functions such as ρ(1 − ρ) can be used for the same purpose. We choose the function in Eq. (36) because its slight asymmetry with respect to ρ = 0.5 tends to favor designs with lower weight.
 
11
In addition to all parameters shown in Table 1, the MMA parameters (Svanberg 1987) used in all examples for the minimization of the AL sub-problems are asyinit = 0.2, asyinc = 1.2, asydec = 0.7, move = 0.1.
 
12
The stress shown in this example, as well as those shown in subsequent examples, is the stress measure \(\widetilde {\sigma }_{e}^{\text {v}}\) (18) normalized with respect to the stress limit, \(\sigma _{\lim }\).
 
13
The isosurfaces as well as the STL files are obtained using the MATLAB-based graphical tool TOPslicer (Zegard and Paulino 2016).
 
14
The computational costs reported in this section are based on the topology optimization results obtained in a computer with an i7-4930k CPU at 3.40 GHz and 64 GB of RAM and a NVIDIA GEFORCE GTX 1080 Ti GPU running on a 64-bit operating system.
 
15
On the other hand, an inconsistent formulation refers to the case in which stresses are not treated locally, i.e., they are either aggregated or clustered.
 
16
The interested reader is referred to Bertsekas (1996, p. 161) for complete proof of the differentiability of the AL function used with (42).
 
Literatur
Zurück zum Zitat Achtziger W, Kanzow C (2008) Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math Program 114(1):69–99MathSciNetMATH Achtziger W, Kanzow C (2008) Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math Program 114(1):69–99MathSciNetMATH
Zurück zum Zitat Achtziger W, Hoheisel T, Kanzow C (2013) A smoothing-regularization approach to mathematical programs with vanishing constraints. Comput Optim Appl 55(3):733–767MathSciNetMATH Achtziger W, Hoheisel T, Kanzow C (2013) A smoothing-regularization approach to mathematical programs with vanishing constraints. Comput Optim Appl 55(3):733–767MathSciNetMATH
Zurück zum Zitat Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidiscip Optim 41(3):407–420MathSciNetMATH Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidiscip Optim 41(3):407–420MathSciNetMATH
Zurück zum Zitat Andreani R, Haeser G, Schuverdt M, Silva P (2012) A relaxed constant positive linear dependence constraint qualification and applications. Math Program 135(1-2):255–273MathSciNetMATH Andreani R, Haeser G, Schuverdt M, Silva P (2012) A relaxed constant positive linear dependence constraint qualification and applications. Math Program 135(1-2):255–273MathSciNetMATH
Zurück zum Zitat Bell E. T. (1986) Men of Mathematics. Simon and Schuster Bell E. T. (1986) Men of Mathematics. Simon and Schuster
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH
Zurück zum Zitat Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, Berlin Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, Berlin
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654MATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin
Zurück zum Zitat Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods (ptimization and Neural Computation Series), 1 ed. Athena Scientific Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods (ptimization and Neural Computation Series), 1 ed. Athena Scientific
Zurück zum Zitat Bertsekas DP (1999) Nonlinear programming, 2nd ed. Athena Scientific Bertsekas DP (1999) Nonlinear programming, 2nd ed. Athena Scientific
Zurück zum Zitat Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37-38):4911–4928MathSciNetMATH Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37-38):4911–4928MathSciNetMATH
Zurück zum Zitat Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141MathSciNetMATH Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141MathSciNetMATH
Zurück zum Zitat Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetMATH Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetMATH
Zurück zum Zitat Cauchy AL (1827) De la pression ou tension dans un corps solide. Exercices Math 2:42–56 Cauchy AL (1827) De la pression ou tension dans un corps solide. Exercices Math 2:42–56
Zurück zum Zitat Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148 Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148
Zurück zum Zitat Cheng G (1995) Some aspects on truss topology optimization. Struct Optim 10(3-4):173–179 Cheng G (1995) Some aspects on truss topology optimization. Struct Optim 10(3-4):173–179
Zurück zum Zitat Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266 Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266
Zurück zum Zitat Christensen P, Klarbring A (2008) An introduction to structural optimization. Solid Mechanics and Its Applications. Springer, Netherlands Christensen P, Klarbring A (2008) An introduction to structural optimization. Solid Mechanics and Its Applications. Springer, Netherlands
Zurück zum Zitat da Silva GA, Beck AT, Sigmund O (2019) Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput Methods Appl Mech Eng 344:512–537MathSciNetMATH da Silva GA, Beck AT, Sigmund O (2019) Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput Methods Appl Mech Eng 344:512–537MathSciNetMATH
Zurück zum Zitat Duysinx P, Bendsøe MP (1998a) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetMATH Duysinx P, Bendsøe MP (1998a) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetMATH
Zurück zum Zitat Duysinx P, Sigmund O (1998b) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, vol 1, pp 1501–1509 Duysinx P, Sigmund O (1998b) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, vol 1, pp 1501–1509
Zurück zum Zitat Emmendoerfer Jr, H, Fancello EA (2014) A level set approach for topology optimization with local stress constraints. Int J Numer Methods Eng 99(2):129–156MathSciNetMATH Emmendoerfer Jr, H, Fancello EA (2014) A level set approach for topology optimization with local stress constraints. Int J Numer Methods Eng 99(2):129–156MathSciNetMATH
Zurück zum Zitat Emmendoerfer Jr, H, Fancello EA (2016) Topology optimization with local stress constraint based on level set evolution via reaction-diffusion. Comput Methods Appl Mech Eng 305:62–88MathSciNetMATH Emmendoerfer Jr, H, Fancello EA (2016) Topology optimization with local stress constraint based on level set evolution via reaction-diffusion. Comput Methods Appl Mech Eng 305:62–88MathSciNetMATH
Zurück zum Zitat Ermoliev YM, Kryazhimskii AV, Ruszczyński A (1997) Constraint aggregation principle in convex optimization. Math Program 76(3):353–372MathSciNetMATH Ermoliev YM, Kryazhimskii AV, Ruszczyński A (1997) Constraint aggregation principle in convex optimization. Math Program 76(3):353–372MathSciNetMATH
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, vol 2. Springer, Berlin Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, vol 2. Springer, Berlin
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetMATH Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetMATH
Zurück zum Zitat Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47-48):3439–3452MathSciNetMATH Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47-48):3439–3452MathSciNetMATH
Zurück zum Zitat Gurtin ME (1981) An introduction to continuum mechanics, vol 158. Academic Press Gurtin ME (1981) An introduction to continuum mechanics, vol 158. Academic Press
Zurück zum Zitat Hoheisel T, Kanzow C (2008) Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J Math Anal Appl 337(1):292–310MathSciNetMATH Hoheisel T, Kanzow C (2008) Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J Math Anal Appl 337(1):292–310MathSciNetMATH
Zurück zum Zitat Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATH Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATH
Zurück zum Zitat Izmailov AF, Solodov MV, Uskov EI (2012) Global convergence of augmented lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J Optim 22(4):1579–1606MathSciNetMATH Izmailov AF, Solodov MV, Uskov EI (2012) Global convergence of augmented lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J Optim 22(4):1579–1606MathSciNetMATH
Zurück zum Zitat James K, Lee E, Martins J (2012) Stress-based topology optimization using an isoparametric level set method. Finite Elem Anal Des 58:20–30 James K, Lee E, Martins J (2012) Stress-based topology optimization using an isoparametric level set method. Finite Elem Anal Des 58:20–30
Zurück zum Zitat Kirsch U (1989) Optimal topologies in truss structures. Comput Methods Appl Mech Eng 72 (1):15–28MATH Kirsch U (1989) Optimal topologies in truss structures. Comput Methods Appl Mech Eng 72 (1):15–28MATH
Zurück zum Zitat Kirsch U, Taye S (1986) On optimal topology of grillage structures. Eng Comput 1:229–243 Kirsch U, Taye S (1986) On optimal topology of grillage structures. Eng Comput 1:229–243
Zurück zum Zitat Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2(3):133–142 Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2(3):133–142
Zurück zum Zitat Kiyono C, Vatanabe S, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10 –19. 70th Anniversary of Professor J. N. Reddy Kiyono C, Vatanabe S, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10 –19. 70th Anniversary of Professor J. N. Reddy
Zurück zum Zitat Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proc Vol 12(7):113–117. IFAC Symposium on computer Aided Design of Control Systems, Zurich, SwitzerlandMATH Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proc Vol 12(7):113–117. IFAC Symposium on computer Aided Design of Control Systems, Zurich, SwitzerlandMATH
Zurück zum Zitat Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620 Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620
Zurück zum Zitat Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661MathSciNetMATH Lee E, James KA, Martins JRRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661MathSciNetMATH
Zurück zum Zitat Lian H, Christiansen AN, Tortorelly DA, Sigmund O (2017) Combined shape and topology optimization for minimization of maximal von Mises stress. Struct Multidiscip Optim 55(5):1541–1557MathSciNet Lian H, Christiansen AN, Tortorelly DA, Sigmund O (2017) Combined shape and topology optimization for minimization of maximal von Mises stress. Struct Multidiscip Optim 55(5):1541–1557MathSciNet
Zurück zum Zitat Love AEH (1892) A treatise on the mathematical theory of elasticity, Vol 1. Cambridge University Press, Cambridge Love AEH (1892) A treatise on the mathematical theory of elasticity, Vol 1. Cambridge University Press, Cambridge
Zurück zum Zitat Malvern LE (1969) Introduction to the mechanics of a continuous Mmedium. Prentice-Hall Malvern LE (1969) Introduction to the mechanics of a continuous Mmedium. Prentice-Hall
Zurück zum Zitat Navarrina F, Muiños I, Colominas I, Casteleiro M (2005) Topology optimization of structures: a minimum weight approach with stress constraints. Adv Eng Softw 36(9):599–606MATH Navarrina F, Muiños I, Colominas I, Casteleiro M (2005) Topology optimization of structures: a minimum weight approach with stress constraints. Adv Eng Softw 36(9):599–606MATH
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization, 2nd ed. Springer, Berlin Nocedal J, Wright SJ (2006) Numerical optimization, 2nd ed. Springer, Berlin
Zurück zum Zitat Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437MathSciNetMATH Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437MathSciNetMATH
Zurück zum Zitat Paris J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441MATH Paris J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441MATH
Zurück zum Zitat Park YK (1995) Extensions of optimal layout design using the homogenization method. Ph.D thesis, University of Michigan, Ann Arbor Park YK (1995) Extensions of optimal layout design using the homogenization method. Ph.D thesis, University of Michigan, Ann Arbor
Zurück zum Zitat Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1-2):50–66MathSciNetMATH Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1-2):50–66MathSciNetMATH
Zurück zum Zitat Petersson J (2001) On continuity of the design-to-state mappings for trusses with variable topology. Int J Eng Sci 39(10):1119– 1141MathSciNetMATH Petersson J (2001) On continuity of the design-to-state mappings for trusses with variable topology. Int J Eng Sci 39(10):1119– 1141MathSciNetMATH
Zurück zum Zitat Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Struct Optim 8(4):228–235 Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Struct Optim 8(4):228–235
Zurück zum Zitat Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidiscip Optim 21(2):164–172MathSciNet Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidiscip Optim 21(2):164–172MathSciNet
Zurück zum Zitat Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38MathSciNet Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38MathSciNet
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424 Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424
Zurück zum Zitat Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239MATH Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239MATH
Zurück zum Zitat Stolpe M, Svanberg K (2001) On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Struct Multidiscip Optim 21(2):140–151 Stolpe M, Svanberg K (2001) On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Struct Multidiscip Optim 21(2):140–151
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH
Zurück zum Zitat Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805 Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetMATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetMATH
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357MathSciNetMATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357MathSciNetMATH
Zurück zum Zitat Talischi C, Paulino GH (2013) An operator splitting algorithm for Tikhonov-regularized topology optimization. Comput Methods Appl Mech Eng 253:599–608MathSciNetMATH Talischi C, Paulino GH (2013) An operator splitting algorithm for Tikhonov-regularized topology optimization. Comput Methods Appl Mech Eng 253:599–608MathSciNetMATH
Zurück zum Zitat Timoshenko S, Goodier JN (1951) Theory of elasticity, 2 ed. McGraw-Hill Timoshenko S, Goodier JN (1951) Theory of elasticity, 2 ed. McGraw-Hill
Zurück zum Zitat Verbart A, Langelaar M, van Keulen F (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidiscip Optim 53(5):1081–1098MathSciNet Verbart A, Langelaar M, van Keulen F (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidiscip Optim 53(5):1081–1098MathSciNet
Zurück zum Zitat Verbart A, Langelaar M, Keulen F. v. (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663–679MathSciNet Verbart A, Langelaar M, Keulen F. v. (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663–679MathSciNet
Zurück zum Zitat Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938MathSciNetMATH Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938MathSciNetMATH
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATH Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATH
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Engineering 2012, pp 1–10 Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Engineering 2012, pp 1–10
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64 Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90:55–64
Zurück zum Zitat Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetMATH Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetMATH
Zurück zum Zitat Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2):98–105 Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2):98–105
Zurück zum Zitat Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192 Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192
Metadaten
Titel
Topology optimization with local stress constraints: a stress aggregation-free approach
verfasst von
Fernando V. Senhora
Oliver Giraldo-Londoño
Ivan F. M. Menezes
Glaucio H. Paulino
Publikationsdatum
20.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02573-9

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.