Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 10/2011

01.10.2011 | Special Issue - Original Article

A robotic system to train activities of daily living in a virtual environment

verfasst von: Marco Guidali, Alexander Duschau-Wicke, Simon Broggi, Verena Klamroth-Marganska, Tobias Nef, Robert Riener

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate motivating game-like scenarios. Several studies have shown a positive effect of game-playing on therapy outcome by increasing motivation. In addition, we assume that practicing highly functional movements can further enhance therapy outcome by facilitating the transfer of motor abilities acquired in therapy to daily life. Therefore, we present a rehabilitation system that enables the training of activities of daily living (ADL) with the support of an assistive robot. Important ADL tasks have been identified and implemented in a virtual environment. A patient-cooperative control strategy with adaptable freedom in timing and space was developed to assist the patient during the task. The technical feasibility and usability of the system was evaluated with seven healthy subjects and three chronic stroke patients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: Proceedings of the IEEE international conference on rehabilitation Robotics, Noordwijk, pp 401–407 Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: Proceedings of the IEEE international conference on rehabilitation Robotics, Noordwijk, pp 401–407
2.
Zurück zum Zitat Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral intervention. J Neurosci 45(30):14964–14971CrossRef Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral intervention. J Neurosci 45(30):14964–14971CrossRef
3.
Zurück zum Zitat Bayona NA, Bitensky J, Salter K, Teasell R (2005) The role of task specific training in rehabilitation therapies. Top Stroke Rehabil 12:58–65PubMed Bayona NA, Bitensky J, Salter K, Teasell R (2005) The role of task specific training in rehabilitation therapies. Top Stroke Rehabil 12:58–65PubMed
4.
Zurück zum Zitat Butefisch C, Hummelsheim H, Denzler P, Mauritz KH (1995) Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 130:59–68PubMedCrossRef Butefisch C, Hummelsheim H, Denzler P, Mauritz KH (1995) Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 130:59–68PubMedCrossRef
5.
Zurück zum Zitat Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR (2006) Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 26(41):564–568CrossRef Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR (2006) Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 26(41):564–568CrossRef
6.
Zurück zum Zitat Colgate JE, Brown JM (1994) Factors affecting the Z-width of haptic display. In: Proceedings of the international conference on Robotics and Automation, San Diego, pp 3205–3210 Colgate JE, Brown JM (1994) Factors affecting the Z-width of haptic display. In: Proceedings of the international conference on Robotics and Automation, San Diego, pp 3205–3210
7.
Zurück zum Zitat Duschau-Wicke A, von Zitzewitz J, Caprez A, Lnenberger L, Riener R (2009) Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 18(1):38–48CrossRef Duschau-Wicke A, von Zitzewitz J, Caprez A, Lnenberger L, Riener R (2009) Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 18(1):38–48CrossRef
8.
Zurück zum Zitat Emken JL, Bobrow JE, Reinkensmeyer DJ (2005) Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: Proceedings of the IEEE 9th international conference rehabilitation Robot, pp 307–312 Emken JL, Bobrow JE, Reinkensmeyer DJ (2005) Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: Proceedings of the IEEE 9th international conference rehabilitation Robot, pp 307–312
9.
Zurück zum Zitat Guidali M, Bchel M, Klamroth V, Nef T, Riener R (2009) Trajectory planning in ADL tasks for an exoskeletal arm rehabilitation robot. In: Proceedings of the European conference on technically assisted rehabilitation, Berlin, pp 20–24 Guidali M, Bchel M, Klamroth V, Nef T, Riener R (2009) Trajectory planning in ADL tasks for an exoskeletal arm rehabilitation robot. In: Proceedings of the European conference on technically assisted rehabilitation, Berlin, pp 20–24
10.
Zurück zum Zitat Haggard P, Richardson J (2003) Spatial patterns in the control of human arm movement. Exp Psychol 2:42–62 Haggard P, Richardson J (2003) Spatial patterns in the control of human arm movement. Exp Psychol 2:42–62
11.
Zurück zum Zitat Holden MK (2005) Virtual environments for motor rehabilitation: review. CyberPsychol Behav 3(8):187–211CrossRef Holden MK (2005) Virtual environments for motor rehabilitation: review. CyberPsychol Behav 3(8):187–211CrossRef
12.
Zurück zum Zitat Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled clinical trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514PubMedCrossRef Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled clinical trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514PubMedCrossRef
13.
Zurück zum Zitat Johnson MJ, Wisneski KJ, Anderson J, Nathan D, Smith RO (2006) Development of ADLER: the activities of daily living exercise robot. In: Proceedings of the biomedical Robotics and Biomechatronic, pp 881–886 Johnson MJ, Wisneski KJ, Anderson J, Nathan D, Smith RO (2006) Development of ADLER: the activities of daily living exercise robot. In: Proceedings of the biomedical Robotics and Biomechatronic, pp 881–886
14.
Zurück zum Zitat Kornell N, Bjork RA (2008) Learning concepts and categories: is spacing the enemy of induction. Psychol Sci 19(6):585–592PubMedCrossRef Kornell N, Bjork RA (2008) Learning concepts and categories: is spacing the enemy of induction. Psychol Sci 19(6):585–592PubMedCrossRef
15.
Zurück zum Zitat Krebs HI (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil 1(5):1–5 Krebs HI (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil 1(5):1–5
16.
Zurück zum Zitat Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care 7:419–423PubMed Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol Health Care 7:419–423PubMed
17.
Zurück zum Zitat Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15(1):7–20CrossRef Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15(1):7–20CrossRef
18.
Zurück zum Zitat Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28:1550–1556PubMedCrossRef Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28:1550–1556PubMedCrossRef
19.
Zurück zum Zitat Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T (2007) A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng 3(15):356–366CrossRef Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T (2007) A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng 3(15):356–366CrossRef
20.
Zurück zum Zitat Langhammer B, Stanghelle JK (2000) Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study. Clin Rehabil 14:361–369PubMedCrossRef Langhammer B, Stanghelle JK (2000) Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study. Clin Rehabil 14:361–369PubMedCrossRef
21.
Zurück zum Zitat Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain Behav Evol 126(4):866–872 Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG (2003) Motor learning elicited by voluntary drive. Brain Behav Evol 126(4):866–872
22.
Zurück zum Zitat Loureiro RCV, Harwin WS (2007) Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. In: Proceedings of the international conference on rehabilitation Robotics, Kyoto, pp 757–763 Loureiro RCV, Harwin WS (2007) Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. In: Proceedings of the international conference on rehabilitation Robotics, Kyoto, pp 757–763
23.
Zurück zum Zitat Lum P, Reinkensmeyer D, Mahoney R, Rymer WZ, Burgar C (2002) Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top Stroke Rehabil 8(4):40–53PubMedCrossRef Lum P, Reinkensmeyer D, Mahoney R, Rymer WZ, Burgar C (2002) Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top Stroke Rehabil 8(4):40–53PubMedCrossRef
24.
Zurück zum Zitat Lum P, Burgar CG, Shor PC, Majmundar M, van der Loos M (2004) Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 12(2):186–194PubMedCrossRef Lum P, Burgar CG, Shor PC, Majmundar M, van der Loos M (2004) Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 12(2):186–194PubMedCrossRef
25.
Zurück zum Zitat Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. Eng Med Biol Soc 2:4888–4891 Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. Eng Med Biol Soc 2:4888–4891
26.
Zurück zum Zitat Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 6(20):20PubMedCrossRef Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 6(20):20PubMedCrossRef
27.
Zurück zum Zitat Mirelman A, Bonato P, Deutsch JE (2009) Effects of training with a robot-virtual reality system compared with a robot alone one the gait of individuals after stroke. Stroke 40(1):169–174PubMedCrossRef Mirelman A, Bonato P, Deutsch JE (2009) Effects of training with a robot-virtual reality system compared with a robot alone one the gait of individuals after stroke. Stroke 40(1):169–174PubMedCrossRef
28.
Zurück zum Zitat Nef T, Lum P (2009) Improving backdrivability in geared rehabilitation robots. Med Biol Eng Comput 47(4):441–447PubMedCrossRef Nef T, Lum P (2009) Improving backdrivability in geared rehabilitation robots. Med Biol Eng Comput 47(4):441–447PubMedCrossRef
29.
Zurück zum Zitat Nef T, Guidali M, Riener R (2009) ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142CrossRef Nef T, Guidali M, Riener R (2009) ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142CrossRef
30.
Zurück zum Zitat Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159(22):197–205PubMedCrossRef Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159(22):197–205PubMedCrossRef
31.
Zurück zum Zitat Platz T (2003) Evidence-based arm rehabilitation—a systematic review of the literature [publication in German]. Nervenarzt 74:841–849PubMedCrossRef Platz T (2003) Evidence-based arm rehabilitation—a systematic review of the literature [publication in German]. Nervenarzt 74:841–849PubMedCrossRef
32.
Zurück zum Zitat Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184PubMedCrossRef Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, IJzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184PubMedCrossRef
33.
Zurück zum Zitat Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13(3):380–394PubMedCrossRef Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13(3):380–394PubMedCrossRef
34.
Zurück zum Zitat Staubli P, Nef T, Klamroth-Marganska V, Riener R (2009) Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J NeuroEng Rehabil 6(1):46–56PubMedCrossRef Staubli P, Nef T, Klamroth-Marganska V, Riener R (2009) Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J NeuroEng Rehabil 6(1):46–56PubMedCrossRef
35.
Zurück zum Zitat Stienen A, Hekman EEG, Prange GB, Jannick M, van der Helm F, van der Kooij H (2009) Dampace: design of an exoskeleton for force-coordination training in upper-extremity rehabilitation. J Med Device 3:031003.1–031003.10 Stienen A, Hekman EEG, Prange GB, Jannick M, van der Helm F, van der Kooij H (2009) Dampace: design of an exoskeleton for force-coordination training in upper-extremity rehabilitation. J Med Device 3:031003.1–031003.10
36.
Zurück zum Zitat Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Trans Neural Syst Rehabil Eng 15(3):336–346CrossRef Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Trans Neural Syst Rehabil Eng 15(3):336–346CrossRef
37.
Zurück zum Zitat Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised clinical trial. Neurol Neursurg Psychiatry 55:530–535CrossRef Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised clinical trial. Neurol Neursurg Psychiatry 55:530–535CrossRef
38.
Zurück zum Zitat Timmermans AAA, Seelen HAM, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6(1):1PubMedCrossRef Timmermans AAA, Seelen HAM, Willmann RD, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6(1):1PubMedCrossRef
39.
Zurück zum Zitat Tsui CS, Gan JQ, Roberts SJ (2009) A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training. Med Biol Eng Comput 47(3):257–265PubMedCrossRef Tsui CS, Gan JQ, Roberts SJ (2009) A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training. Med Biol Eng Comput 47(3):257–265PubMedCrossRef
40.
Zurück zum Zitat Wolbrecht E, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. Trans Neural Syst Rehabil Eng 16(3):286-297CrossRef Wolbrecht E, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. Trans Neural Syst Rehabil Eng 16(3):286-297CrossRef
Metadaten
Titel
A robotic system to train activities of daily living in a virtual environment
verfasst von
Marco Guidali
Alexander Duschau-Wicke
Simon Broggi
Verena Klamroth-Marganska
Tobias Nef
Robert Riener
Publikationsdatum
01.10.2011
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 10/2011
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-011-0809-0

Weitere Artikel der Ausgabe 10/2011

Medical & Biological Engineering & Computing 10/2011 Zur Ausgabe

Premium Partner