Skip to main content

2018 | OriginalPaper | Buchkapitel

A Robust Turn Detection Algorithm Based on Periodic Signal Identification

verfasst von : Yu Chen, Haiyong Luo, Fang Zhao, Wenhua Shao, Qu Wang

Erschienen in: China Satellite Navigation Conference (CSNC) 2018 Proceedings

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turn detection can be widely used in location navigation, user behavior identification, and scene awareness. Accurate real-time identification of pedestrian turns contributes to improving the accuracy of positioning navigation accuracy and scene awareness. Considering the problem of the insufficient accuracy and robustness of the existing turn detection algorithm, this paper proposes a turn detection algorithm based on periodic signal recognition, which effectively solves the misjudgment caused by the periodic swing of user walking. The algorithm collects the acceleration sensor and the gyro sensor data in real time and calculates the angular velocity of the rotation in the vertical direction by multiplying the vertical gravitational acceleration unit vector by the gyro sensor data. In this paper, fast Fourier transform (FFT) is used to identify and eliminate periodic interfering signals generated by user walking, only keeping the non-periodic signal generated by user walking (such as turning). By integrating the vertical angular velocity data in the sliding window to obtain the angle change value of the user walking within a certain period of time, and the threshold value is compared to realize the accurate identification of the turning behavior. In order to adapt to the user’s turn size and the turn speed, the algorithm also proposes a corner detection method based on multi-sliding window. The experiment results show that the proposed algorithm has higher accuracy and lower power consumption than other algorithms which based on GPS and electronic compass. The algorithm can realize the accurate identification of the turning behavior of the mobile phone in various positions of the user, and has good robustness. The accuracy of turning recognition can reach 93% and the average power consumption is about 60 mW.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yiyan L, Fang Z, Wenhua S, Haiyong L (2016) An hidden Markov model based complex walking pattern recognition algorithm. In: 2016 fourth international conference on ubiquitous positioning, indoor navigation and location based services (UPINLBS). IEEE, Nov 2016, pp 223–229 Yiyan L, Fang Z, Wenhua S, Haiyong L (2016) An hidden Markov model based complex walking pattern recognition algorithm. In: 2016 fourth international conference on ubiquitous positioning, indoor navigation and location based services (UPINLBS). IEEE, Nov 2016, pp 223–229
2.
Zurück zum Zitat Williams B, Kein G, Reid I (2007) Real-time SLAM relocalisation. In: IEEE 11th international conference on computer vision, 2007. ICCV 2007. IEEE Williams B, Kein G, Reid I (2007) Real-time SLAM relocalisation. In: IEEE 11th international conference on computer vision, 2007. ICCV 2007. IEEE
3.
Zurück zum Zitat Phuyal BP (2002) Turn detection algorithm for vehicle positioning. US Patent 6,502,033[P], 31 Dec 2002 Phuyal BP (2002) Turn detection algorithm for vehicle positioning. US Patent 6,502,033[P], 31 Dec 2002
5.
Zurück zum Zitat Misra P, Enge P (2006) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, Lincoln, MA, USA Misra P, Enge P (2006) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press, Lincoln, MA, USA
6.
Zurück zum Zitat Nasir A, Rao KR (1975) Fast fourier transform. In: Orthogonal transforms for digital signal processing. Springer, Berlin, Heidelberg, pp 54–84 Nasir A, Rao KR (1975) Fast fourier transform. In: Orthogonal transforms for digital signal processing. Springer, Berlin, Heidelberg, pp 54–84
7.
Zurück zum Zitat Phuyal BP (2002) Turn detection algorithm for vehicle positioning. US Patent No. 6,502,033, 31 Dec 2002 Phuyal BP (2002) Turn detection algorithm for vehicle positioning. US Patent No. 6,502,033, 31 Dec 2002
8.
Zurück zum Zitat Giebeler C, Adelerhof DJ, Kuiper AET, Van Zon JBA, Oelgeschläger D, Schulz G (2001) Robust GMR sensors for angle detection and rotation speed sensing. Sens Actuators A Phys 91(1):16–20CrossRef Giebeler C, Adelerhof DJ, Kuiper AET, Van Zon JBA, Oelgeschläger D, Schulz G (2001) Robust GMR sensors for angle detection and rotation speed sensing. Sens Actuators A Phys 91(1):16–20CrossRef
9.
Zurück zum Zitat Ozawa H (1992) Angle detection sensor with setting of ratio of magnetic forces of rotating magnet and bias magnet. US Patent No. 5,148,106, 15 Sep 1992 Ozawa H (1992) Angle detection sensor with setting of ratio of magnetic forces of rotating magnet and bias magnet. US Patent No. 5,148,106, 15 Sep 1992
10.
Zurück zum Zitat Köping L, Ebner F, Grzegorzek M, Deinzer F (2014) Indoor localization using step and turn detection together with floor map information. FHWS Sci J, 9 Köping L, Ebner F, Grzegorzek M, Deinzer F (2014) Indoor localization using step and turn detection together with floor map information. FHWS Sci J, 9
11.
Zurück zum Zitat Chung J, Donahoe M, Schmandt C et al (2011) Indoor location sensing using geo-magnetism. In: Proceedings of the 9th international conference on Mobile systems, applications, and services. ACM, pp 141–154 Chung J, Donahoe M, Schmandt C et al (2011) Indoor location sensing using geo-magnetism. In: Proceedings of the 9th international conference on Mobile systems, applications, and services. ACM, pp 141–154
12.
Zurück zum Zitat Marron JJ et al (2016) Multi sensor system for pedestrian tracking and activity recognition in indoor environments. Int J Ad Hoc Ubiquitous Comput 23(1–2):3–23 Marron JJ et al (2016) Multi sensor system for pedestrian tracking and activity recognition in indoor environments. Int J Ad Hoc Ubiquitous Comput 23(1–2):3–23
13.
Zurück zum Zitat Flores GH, Manduchi R, Zenteno ED (2014) Ariadne’s thread: Robust turn detection for path back-tracing using the iPhone. In: Ubiquitous positioning indoor navigation and location based service (UPINLBS). IEEE, Nov 2014, pp 133–140 Flores GH, Manduchi R, Zenteno ED (2014) Ariadne’s thread: Robust turn detection for path back-tracing using the iPhone. In: Ubiquitous positioning indoor navigation and location based service (UPINLBS). IEEE, Nov 2014, pp 133–140
14.
Zurück zum Zitat Favre J, Jolles BM, Siegrist O, Aminian K (2006) Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron Lett 42(11):612–614CrossRef Favre J, Jolles BM, Siegrist O, Aminian K (2006) Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron Lett 42(11):612–614CrossRef
15.
Zurück zum Zitat Eren H, Makinist S, Akin E, Yilmaz A (2012) Estimating driving behavior by a smartphone. In: Intelligent vehicles symposium (IV). IEEE, June 2012, pp 234–239 Eren H, Makinist S, Akin E, Yilmaz A (2012) Estimating driving behavior by a smartphone. In: Intelligent vehicles symposium (IV). IEEE, June 2012, pp 234–239
16.
Zurück zum Zitat Eddy SR (1996) Hidden markov models. Curr Opin Struct Biol 6(3):361–365. MLACrossRef Eddy SR (1996) Hidden markov models. Curr Opin Struct Biol 6(3):361–365. MLACrossRef
17.
Zurück zum Zitat Hemminki S, Nurmi P, Tarkoma S (2013) Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems. ACM, Nov 2013, p 13 Hemminki S, Nurmi P, Tarkoma S (2013) Accelerometer-based transportation mode detection on smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems. ACM, Nov 2013, p 13
18.
Zurück zum Zitat Li F, Zhao C, Ding G, Gong J, Liu C, Zhao F (2012) A reliable and accurate indoor localization method using phone inertial sensors. In: Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, Sept 2012, pp 421–430 Li F, Zhao C, Ding G, Gong J, Liu C, Zhao F (2012) A reliable and accurate indoor localization method using phone inertial sensors. In: Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, Sept 2012, pp 421–430
Metadaten
Titel
A Robust Turn Detection Algorithm Based on Periodic Signal Identification
verfasst von
Yu Chen
Haiyong Luo
Fang Zhao
Wenhua Shao
Qu Wang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0005-9_27

    Premium Partner