Skip to main content
Erschienen in: Computational Mechanics 5/2019

07.05.2019 | Original Paper

A sequential homogenization of multi-coated micromechanical model for functionally graded interphase composites

verfasst von: Yi Cheng, Hui Cheng, Kaifu Zhang, Kevontrez Kyvon Jones, Jiaying Gao, Junshan Hu, Hailin Li, Wing Kam Liu

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to represent the functionally graded properties of interphase, a multi-coated micromechanical model is developed. Based on elliptic shell integration of Green’s function, the strain disturbance in each phase is obtained. According to computational investigation of this model, the outer layer of the interphase does not bring in strain disturbance within the inner ones. To this end, a sequential computational homogenization method is proposed. The inhomogeneities are added sequentially from outside to inside. The temporary effective modulus on each stage is obtained by the Self Consistency Scheme. Then the effective modulus of the overall composites are fitted with a Mori–Tanaka estimation for practical applications. The effectiveness of present method is verified by the results of “2 + 1” and “3 + 1” models in prior researches and finite element simulations. Finally, the influence of thickness and stiffness of interphase on the composites’ effective modulus are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Torralba JM, Velasco F, Costa CE, Vergara I, Cáceres D (2002) Mechanical behaviour of the interphase between matrix and reinforcement of Al 2014 matrix composite reinforced with (Ni3Al). Compos Part A Appl Sci Manuf 33(3):427–434 Torralba JM, Velasco F, Costa CE, Vergara I, Cáceres D (2002) Mechanical behaviour of the interphase between matrix and reinforcement of Al 2014 matrix composite reinforced with (Ni3Al). Compos Part A Appl Sci Manuf 33(3):427–434
2.
Zurück zum Zitat George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26(6):985–1017 George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26(6):985–1017
3.
Zurück zum Zitat Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27:315–330MATH Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27:315–330MATH
4.
Zurück zum Zitat Giambanco G, Scimemi GF, Spada A (2012) The interphase finite element. Comput Mech 50(3):353–366MathSciNetMATH Giambanco G, Scimemi GF, Spada A (2012) The interphase finite element. Comput Mech 50(3):353–366MathSciNetMATH
5.
Zurück zum Zitat Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562 Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562
6.
Zurück zum Zitat Shandiz SA, Montazeri A (2016) A novel MD-based procedure to obtain the interphase Young’s modulus in nanocomposites. Comput Mater Sci 113:104–111 Shandiz SA, Montazeri A (2016) A novel MD-based procedure to obtain the interphase Young’s modulus in nanocomposites. Comput Mater Sci 113:104–111
7.
Zurück zum Zitat Li Y, Liu Z, Jia Z, Liu WK, Aldousari SM, Hedia HS, Asiri SA (2017) Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Comput Mech 59:187–201 Li Y, Liu Z, Jia Z, Liu WK, Aldousari SM, Hedia HS, Asiri SA (2017) Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Comput Mech 59:187–201
8.
Zurück zum Zitat Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863 Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863
9.
Zurück zum Zitat Marais S, Gouanve F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Metayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos Part A Appl Sci Manuf 36:975–986 Marais S, Gouanve F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Metayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos Part A Appl Sci Manuf 36:975–986
10.
Zurück zum Zitat Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240 Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240
11.
Zurück zum Zitat Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Compos Part A Appl Sci Manuf 37:2213–2220 Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Compos Part A Appl Sci Manuf 37:2213–2220
12.
Zurück zum Zitat Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43 Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43
13.
Zurück zum Zitat Boddu VM, Brenner MW, Patel JS (2016) Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes. Compos Part B 88:44–54 Boddu VM, Brenner MW, Patel JS (2016) Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes. Compos Part B 88:44–54
14.
Zurück zum Zitat Zhang Y, Zhao J, Jia Y, Mabrouki T, Gong Y, Wei N, Rabczuk T (2013) An analytical solution on interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase. Compos Struct 104:261–269 Zhang Y, Zhao J, Jia Y, Mabrouki T, Gong Y, Wei N, Rabczuk T (2013) An analytical solution on interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase. Compos Struct 104:261–269
15.
Zurück zum Zitat Schoneich M, Zamanzade M, Stommel M (2015) Fiber-matrix interphase in applied short glass fiber composites determined by a nano-scratch method. Compos Sci Technol 119:100–107 Schoneich M, Zamanzade M, Stommel M (2015) Fiber-matrix interphase in applied short glass fiber composites determined by a nano-scratch method. Compos Sci Technol 119:100–107
16.
Zurück zum Zitat Kundalwal SI, Kumar S (2016) Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech Mater 102:117–131 Kundalwal SI, Kumar S (2016) Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech Mater 102:117–131
17.
Zurück zum Zitat Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412 Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412
18.
Zurück zum Zitat Nazarenko L, Stolarski H, Altenbach H (2017) A model of cylindrical inhomogeneity with spring layer interphase and its application to analysis of short-fiber composites. Compos Struct 160:635–652 Nazarenko L, Stolarski H, Altenbach H (2017) A model of cylindrical inhomogeneity with spring layer interphase and its application to analysis of short-fiber composites. Compos Struct 160:635–652
19.
Zurück zum Zitat Nazarenko L, Stolarski H, Altenbach H (2016) Effective properties of short-fiber composites with Gurtin–Murdoch model of interphase. Int J Solids Struct 97–98:75–88 Nazarenko L, Stolarski H, Altenbach H (2016) Effective properties of short-fiber composites with Gurtin–Murdoch model of interphase. Int J Solids Struct 97–98:75–88
20.
Zurück zum Zitat Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833MathSciNetMATH Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833MathSciNetMATH
21.
Zurück zum Zitat Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33:309–323 Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33:309–323
22.
Zurück zum Zitat Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54:708–734MathSciNetMATH Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54:708–734MathSciNetMATH
23.
Zurück zum Zitat Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond Ser A 241:376–396MathSciNetMATH Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond Ser A 241:376–396MathSciNetMATH
24.
Zurück zum Zitat Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff Publishers, DordrechtMATH Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff Publishers, DordrechtMATH
25.
Zurück zum Zitat Trotta S, Marmo F, Rosati L (2017) Evaluation of the Eshelby tensor for polygonal inclusions. Compos Part B 115:170–181 Trotta S, Marmo F, Rosati L (2017) Evaluation of the Eshelby tensor for polygonal inclusions. Compos Part B 115:170–181
26.
Zurück zum Zitat Trotta S, Marmo F, Rosati L (2016) Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity. Compos Part B 106:48–58 Trotta S, Marmo F, Rosati L (2016) Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity. Compos Part B 106:48–58
27.
Zurück zum Zitat Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetMATH Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetMATH
28.
Zurück zum Zitat Li S, Sauer RA, Wang G (2007) The Eshelby tensors in a finite spherical domain—part I: theoretical formulations. J Appl Mech 74:770–783MathSciNet Li S, Sauer RA, Wang G (2007) The Eshelby tensors in a finite spherical domain—part I: theoretical formulations. J Appl Mech 74:770–783MathSciNet
29.
Zurück zum Zitat Li S, Sauer RA, Wang G (2007) The Eshelby tensors in a finite spherical domain—part ii: applications to homogenization. J Appl Mech 74:784–797MathSciNet Li S, Sauer RA, Wang G (2007) The Eshelby tensors in a finite spherical domain—part ii: applications to homogenization. J Appl Mech 74:784–797MathSciNet
30.
Zurück zum Zitat Shi C, Tu Q, Fan H, Rios CAO, Li S (2016) Interphase models for nanoparticle-polymer composites. J Nanomech Micromech 6(2):04016003 Shi C, Tu Q, Fan H, Rios CAO, Li S (2016) Interphase models for nanoparticle-polymer composites. J Nanomech Micromech 6(2):04016003
31.
Zurück zum Zitat Shi C, Tu Q, Fan H, Li S (2016) An interphase model for effective elastic properties of concrete composites. J Micromech Mol Phys 1(1):1650005-1-19 Shi C, Tu Q, Fan H, Li S (2016) An interphase model for effective elastic properties of concrete composites. J Micromech Mol Phys 1(1):1650005-1-19
32.
Zurück zum Zitat Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multuphase materials. J Mech Phys Solids 11(42):127–140MathSciNetMATH Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multuphase materials. J Mech Phys Solids 11(42):127–140MathSciNetMATH
33.
Zurück zum Zitat Eshelby JD (1961) Elastic inclusions and inhomogeneities. Prog Solid Mech 2:89–104MathSciNet Eshelby JD (1961) Elastic inclusions and inhomogeneities. Prog Solid Mech 2:89–104MathSciNet
34.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574 Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574
35.
Zurück zum Zitat Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 4:213–222 Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 4:213–222
36.
Zurück zum Zitat Dinzart F, Sabar H (2017) New micromechanical modeling of the elastic behavior of composite materials with ellipsoidal reinforcements and imperfect interfaces. Int J Solids Struct 108:254–262 Dinzart F, Sabar H (2017) New micromechanical modeling of the elastic behavior of composite materials with ellipsoidal reinforcements and imperfect interfaces. Int J Solids Struct 108:254–262
37.
Zurück zum Zitat Liu Z, Moore JA, Liu WK (2016) An extended micromechanics method for probing interphase properties in polymer nanocomposites. J Mech Phys Solids 95:663–680MathSciNet Liu Z, Moore JA, Liu WK (2016) An extended micromechanics method for probing interphase properties in polymer nanocomposites. J Mech Phys Solids 95:663–680MathSciNet
38.
Zurück zum Zitat Liu WK, Fish J, Chen JS, Camanho PP (2016) Preface: special issue of computational mechanics on “Connecting multiscale mechanics to complex material design”. Comput Mech 57(3):1–3MathSciNetMATH Liu WK, Fish J, Chen JS, Camanho PP (2016) Preface: special issue of computational mechanics on “Connecting multiscale mechanics to complex material design”. Comput Mech 57(3):1–3MathSciNetMATH
39.
Zurück zum Zitat Johnson KL, Rodgers TM, Underwood OD, Madison JD, Ford KR, Whetten SR, Dagel DJ, Bishop JE (2018) Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput Mech 61(5):559–574MATH Johnson KL, Rodgers TM, Underwood OD, Madison JD, Ford KR, Whetten SR, Dagel DJ, Bishop JE (2018) Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput Mech 61(5):559–574MATH
40.
Zurück zum Zitat Hori M, Nemat-Nasser S (1993) Double-inclusion model and overall moduli of multi-phase composites. Mech Mater 14:189–206 Hori M, Nemat-Nasser S (1993) Double-inclusion model and overall moduli of multi-phase composites. Mech Mater 14:189–206
41.
Zurück zum Zitat Nemat-Nasser S (2000) Multi-inclusion method for finite deformations: exact results and applications. Mater Sci Eng, A 285:239–245 Nemat-Nasser S (2000) Multi-inclusion method for finite deformations: exact results and applications. Mater Sci Eng, A 285:239–245
42.
Zurück zum Zitat Rao YN, Dai HL (2017) Micromechanics-based thermo-viscoelastic properties prediction of fiber reinforced polymers with graded interphases and slightly weakened interfaces. Compos Struct 168:440–455 Rao YN, Dai HL (2017) Micromechanics-based thermo-viscoelastic properties prediction of fiber reinforced polymers with graded interphases and slightly weakened interfaces. Compos Struct 168:440–455
43.
Zurück zum Zitat Herve-Luanco E (2017) Simplification of the (n + 1)-phase model and its extension to non-linear behavior. Int J Solids Struct 121:135–147 Herve-Luanco E (2017) Simplification of the (n + 1)-phase model and its extension to non-linear behavior. Int J Solids Struct 121:135–147
44.
Zurück zum Zitat Sabiston T, Mohammadi M, Cherkaoui M, Levesque J, Inal K (2016) Micromechanics for a long fibre reinforced composite model with a functionally graded interphase. Compos Part B 84:188–199 Sabiston T, Mohammadi M, Cherkaoui M, Levesque J, Inal K (2016) Micromechanics for a long fibre reinforced composite model with a functionally graded interphase. Compos Part B 84:188–199
45.
Zurück zum Zitat Sabiston T, Mohammadi M, Cherkaoui M, Levesque J, Inal K (2016) Micromechanics based elasto-visco-plastic response of long fibre composites using functionally graded interphases at quasi-static and moderate strain rates. Compos Part B 100:31–43 Sabiston T, Mohammadi M, Cherkaoui M, Levesque J, Inal K (2016) Micromechanics based elasto-visco-plastic response of long fibre composites using functionally graded interphases at quasi-static and moderate strain rates. Compos Part B 100:31–43
46.
Zurück zum Zitat Xu Y, You T, Du C (2015) An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite. Compos Struct 122:308–315 Xu Y, You T, Du C (2015) An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite. Compos Struct 122:308–315
47.
Zurück zum Zitat Xu Y, Zhang W, Bassir D (2010) Stress analysis of multi-phase and multi-layer plain weave composite structure using global/local approach. Compos Struct 92:1143–1154 Xu Y, Zhang W, Bassir D (2010) Stress analysis of multi-phase and multi-layer plain weave composite structure using global/local approach. Compos Struct 92:1143–1154
48.
Zurück zum Zitat Xu Y, Zhang P, Lu H, Zhang W (2015) Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites. Compos Struct 133:148–156 Xu Y, Zhang P, Lu H, Zhang W (2015) Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites. Compos Struct 133:148–156
49.
Zurück zum Zitat Dinzarta F, Sabara H, Berbenni S (2016) Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int J Eng Sci 100:136–151MathSciNet Dinzarta F, Sabara H, Berbenni S (2016) Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int J Eng Sci 100:136–151MathSciNet
50.
Zurück zum Zitat Liu J, Bosco E, Suiker ASJ (2018) Multi-scale modelling of granular materials: numerical framework and study on micro-structural features. Comput Mech 63(2):409–427MathSciNetMATH Liu J, Bosco E, Suiker ASJ (2018) Multi-scale modelling of granular materials: numerical framework and study on micro-structural features. Comput Mech 63(2):409–427MathSciNetMATH
51.
Zurück zum Zitat Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNet Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNet
52.
Zurück zum Zitat Tang S, Hou TY, Liu WK (2006) A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J Comput Phys 213(1):57–85MathSciNetMATH Tang S, Hou TY, Liu WK (2006) A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J Comput Phys 213(1):57–85MathSciNetMATH
Metadaten
Titel
A sequential homogenization of multi-coated micromechanical model for functionally graded interphase composites
verfasst von
Yi Cheng
Hui Cheng
Kaifu Zhang
Kevontrez Kyvon Jones
Jiaying Gao
Junshan Hu
Hailin Li
Wing Kam Liu
Publikationsdatum
07.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01712-4

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt