Skip to main content
Erschienen in: Microsystem Technologies 10/2021

03.01.2021 | Technical Paper

A surface potential-model based parameter extraction of Si–Ge-pocket n-TFET

verfasst von: Sagarika Choudhury, Krishna Lal Baishnab, Koushik Guha, Jacopo Iannacci

Erschienen in: Microsystem Technologies | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an algorithm based approach for TFET (Tunnel Field Effect Transistor) design. A numerous number of meta-heuristic algorithms have been used to procure the best device dimension for a Si–Ge (Silicon–Germanium) pocket n-TFET. The foremost important task is to find an alternative to hit and trails based device optimization and thereby improve the device performance by using those techniques. The algorithm based approach requires an objective function. The surface potential based models efficiently represents the device physical properties, thus surface potential based model is used as an objective function. The impact of the channel length, of the Si–Ge layer and device thickness, as well as of oxide thickness are studied by considering them as design variables. The design process involves simulating and validating the obtained dimensions in Technology Computer Aided Design (TCAD). State of art techniques are being outperformed by this algorithmic approach and out of all applied algorithms the Human Behavior Particle Swarm Optimization algorithm (HBPSO) is more accurate. An ON-current of 4.8 × 10–4 A and OFF-current of 4.8 × 10–12 A is achieved by optimizing the structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field effect transistors (TFETs) with sub threshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28:743–745CrossRef Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field effect transistors (TFETs) with sub threshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28:743–745CrossRef
Zurück zum Zitat Goswami R, Bhowmick B, Baishya S (2016) Physics-based surface potential, electric field and drain current model of a δp+ Si1-xGex gate–drain underlap nanoscale n-TFET. Int J Electron 103:1566–1579 Goswami R, Bhowmick B, Baishya S (2016) Physics-based surface potential, electric field and drain current model of a δp+ Si1-xGex gate–drain underlap nanoscale n-TFET. Int J Electron 103:1566–1579
Zurück zum Zitat Hraziia A, Andrei C, Vladimirescu A et al (2012) An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron 70:67–72CrossRef Hraziia A, Andrei C, Vladimirescu A et al (2012) An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electron 70:67–72CrossRef
Zurück zum Zitat Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337CrossRef Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329–337CrossRef
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Networks 1:1942–1948CrossRef Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Networks 1:1942–1948CrossRef
Zurück zum Zitat Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56:456–465CrossRef Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56:456–465CrossRef
Zurück zum Zitat Krishnamohan T, Kim D, Raghunathan S (2008) K Saraswat, double-gate strained-GeHeterostructure tunneling FET (TFET) with record high drive currents and<60 mV/dec subthreshold slope, electron devices meeting, IEDM. IEEE Int 15–17:947–949 Krishnamohan T, Kim D, Raghunathan S (2008) K Saraswat, double-gate strained-GeHeterostructure tunneling FET (TFET) with record high drive currents and<60 mV/dec subthreshold slope, electron devices meeting, IEDM. IEEE Int 15–17:947–949
Zurück zum Zitat Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60:3285–3290CrossRef Kumar MJ, Janardhanan S (2013) Doping-less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60:3285–3290CrossRef
Zurück zum Zitat Lonescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479:329–337CrossRef Lonescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479:329–337CrossRef
Zurück zum Zitat Mirjalili S, Andrew L (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef Mirjalili S, Andrew L (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRef
Zurück zum Zitat Pal A, Sachid B, Gossner H, Rao VR (2011) Insights into device design Insights Into the design and optimization of tunnel-FET devices and circuit. IEEE Trans Electron Devices 58:1045–1053CrossRef Pal A, Sachid B, Gossner H, Rao VR (2011) Insights into device design Insights Into the design and optimization of tunnel-FET devices and circuit. IEEE Trans Electron Devices 58:1045–1053CrossRef
Zurück zum Zitat Patel N, Ramesha A, Mahapatra S (2008) Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron J 39:1671–1677CrossRef Patel N, Ramesha A, Mahapatra S (2008) Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron J 39:1671–1677CrossRef
Zurück zum Zitat Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(9):770–772CrossRef Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(9):770–772CrossRef
Zurück zum Zitat Rao SS (2009) Engineering optimization theory and practice. Wiley, HobokenCrossRef Rao SS (2009) Engineering optimization theory and practice. Wiley, HobokenCrossRef
Zurück zum Zitat Saurabh S, Kumar MJ (2010) Estimation and compensation of process-induced variations in nano scale tunnel field-effect transistors for improved reliability. IEEE Trans Device Mater Rel 10:390–395CrossRef Saurabh S, Kumar MJ (2010) Estimation and compensation of process-induced variations in nano scale tunnel field-effect transistors for improved reliability. IEEE Trans Device Mater Rel 10:390–395CrossRef
Zurück zum Zitat Seabaugh C, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98:2095–2110CrossRef Seabaugh C, Zhang Q (2010) Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE 98:2095–2110CrossRef
Zurück zum Zitat Storn R, Price K (1995) Differential evolution—a sample and efficient adaptive scheme for global optimization over continuous spaces. Int Comput Sci Inst Tech Rep 95(121):1–11 Storn R, Price K (1995) Differential evolution—a sample and efficient adaptive scheme for global optimization over continuous spaces. Int Comput Sci Inst Tech Rep 95(121):1–11
Zurück zum Zitat Toh EH, Wang GH, Samudra G, Yeo YC (2008) Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J Appl Phys 103:104504–1-104504–5CrossRef Toh EH, Wang GH, Samudra G, Yeo YC (2008) Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J Appl Phys 103:104504–1-104504–5CrossRef
Zurück zum Zitat Verhulst AS, Vandenberghe WG, Maex K et al (2007) Tunnel field-effect transistor without gate drain overlap. Appl Phys Lett 91(5):053102–053103CrossRef Verhulst AS, Vandenberghe WG, Maex K et al (2007) Tunnel field-effect transistor without gate drain overlap. Appl Phys Lett 91(5):053102–053103CrossRef
Metadaten
Titel
A surface potential-model based parameter extraction of Si–Ge-pocket n-TFET
verfasst von
Sagarika Choudhury
Krishna Lal Baishnab
Koushik Guha
Jacopo Iannacci
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05186-w

Weitere Artikel der Ausgabe 10/2021

Microsystem Technologies 10/2021 Zur Ausgabe