Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

A survey on the study of Hilbert-type inequalities

verfasst von: Qiang Chen, Bicheng Yang

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hilbert-type inequalities are divided three parts: Hilbert’s inequalities (1908), Hardy-Hilbert-type inequalities (1934) and Yang-Hilbert-type inequalities (2009). In this paper, we give a summary of the development of the theory of Hilbert-type inequalities during the past 110 years.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

1 Hilbert’s inequalities and the operator expressions

1.1 Hilbert’s inequalities

In 1908, Weyl [1] published the following inequality.
If \(\{a_{m}\}_{m=1}^{\infty}\) and \(\{b_{n}\}_{n=1}^{\infty}\) are real sequences, satisfying \(0<\sum_{m=1}^{\infty}a_{m}^{2}<\infty\) and \(0<\sum_{n=1}^{\infty}b_{n}^{2}<\infty\), then
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \pi \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(1)
where the constant factor π is the best possible.
We named (1) Hilbert’s inequality; it does not contain any parameter. The best possible property of the constant factor π was proved by Schur [2] in 1911. He also gave the following integral analog of (1) at the same time.
If \(f(x)\) and \(g(y)\) are measurable functions, such that \(0<\int_{0}^{\infty }f^{2}(x)\, dx<\infty\) and \(0<\int_{0}^{\infty}g^{2}(y)\, dy<\infty\), then
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \pi \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}, $$
(2)
where the constant factor π is still the best possible.
We called (2) Hilbert’s integral inequality, which still does not contain any parameter. Inequalities (1) and (2) are important in analysis and its applications. We can find a number of improvements and extensions in the vast mathematics literature, especially in [36].

1.2 Hilbert’s operators

We may express inequality (1) by using the form of the operator as follows.
If \(l^{2}\) is a space of real sequences, and \(T:l^{2}\rightarrow l^{2}\) is a linear operator, for any \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{2}\), there exists a \(c=\{c_{n}\}_{n=1}^{\infty}\in l^{2}\), satisfying
$$ c_{n}=(Ta) (n)=\sum_{m=1}^{\infty} \frac{a_{m}}{m+n},\quad n\in\mathbf{N}=\{1,2,\ldots\}. $$
(3)
Hence for any \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{2}\), we may write the inner product of Ta and b as follows:
$$ (Ta,b)=(c,b)=\sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac {a_{m}}{m+n} \Biggr) b_{n}=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}. $$
(4)
Expressing the norm of a as \(\|a\|_{2}=\{\sum_{n=1}^{\infty }a_{n}^{2}\}^{1/2}\), in view of (4), inequality (1) may be rewritten as follows:
$$ (Ta,b)< \pi\|a\|_{2}\|b\|_{2}, $$
(5)
where \(\|a\|_{2},\|b\|_{2}>0\). We may prove that T is a bounded operator and obtain the norm \(\|T\|=\pi\) (cf. [7]). We call T Hilbert’s operator.
For \(\|a\|_{2}>0\), the equivalent form of (5) is given as \(\|Ta\|_{2}<\pi\|a\|_{2}\), e.t.
$$ \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{m+n} \Biggr) ^{2}< \pi^{2}\sum_{m=1}^{\infty}a_{m}^{2}, $$
(6)
where the constant factor \(\pi^{2}\) is still the best possible. Obviously, inequalities (6) and (1) are equivalent (cf. [3]).
Similarly, if \(L^{2}(\mathbf{R}_{+})\) is a space of real functions, we may define Hilbert’s integral operator \(\widetilde{T}:L^{2}(\mathbf {R}_{+})\rightarrow L^{2}(\mathbf{R}_{+})\) as follows.
For any \(f\in L^{2}(\mathbf{R}_{+})\), there exists a \(h=\widetilde {T}f\in L^{2}(\mathbf{R}_{+})\), satisfying
$$ (\widetilde{T}f) (y)=h(y)=\int_{0}^{\infty} \frac{f(x)}{x+y}\,dx,\quad y\in (0,\infty ). $$
(7)
Hence, for any \(g\in L^{2}(\mathbf{R}_{+})\), we may still can indicate the inner product of T̃f and g as follows:
$$ (\widetilde{T}f,g)=\int_{0}^{\infty} \biggl( \int _{0}^{\infty}\frac {f(x)}{x+y}\,dx \biggr) g(y)\,dy=\int _{0}^{\infty}\int_{0}^{\infty} \frac {f(x)g(y)}{x+y}\,dx\,dy. $$
(8)
Setting the norm of f as \(\|f\|_{2}= ( \int_{0}^{\infty }f^{2}(x)\,dx ) ^{\frac{1}{2}}\), if \(\|f\|_{2},\|g\|_{2}>0\), then (2) may be rewritten as follows:
$$ (\widetilde{T}f,g)< \pi\|f\|_{2}\|g\|_{2}. $$
(9)
It follows that \(\|\widetilde{T}f\|=\pi\) (cf. [8]), and then we have the equivalent form of (2) as \(\|\widetilde{T}f\|_{2}<\pi \|f|\|_{2}\|\), e.t. (cf. [3]):
$$ \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{x+y}\,dx \biggr) ^{2}\,dy< \pi^{2}\int _{0}^{\infty}f^{2}(x)\,dx, $$
(10)
where the constant factor \(\pi^{2}\) is still the best possible. It is obvious that inequality (10) is the integral analog of (6).

1.3 A more accurate discrete Hilbert’s inequality

If we let the subscripts m, n of the double series go from 0 to infinity, then we may rewrite inequality (1) equivalently in the following form:
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+2}< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2}\sum _{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(11)
where the constant factor π is still the best possible. Obviously, we may raise the following question:
Is there a positive constant α (<2) that leaves the inequality still valid as we replace 2 by α in the kernel \(\frac{1}{m+n+2}?\) The answer is positive. That is, we have the following more accurate Hilbert inequality (for short, Hilbert’s inequality) (cf. [3]):
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(12)
where the constant factor π is the best possible.
Since for \(a_{m},b_{n}\geq0\), \(\alpha\geq1\),
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+\alpha }\leq \sum _{n=0}^{\infty}\sum_{m=0}^{\infty} \frac{a_{m}b_{n}}{m+n+1}, $$
then by (12) and for \(\alpha\geq1\), we have
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+\alpha }< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(13)
For \(1\leq\alpha<2\), inequality (13) is a refinement of (11). Obviously, we have a refinement of (6), which is equivalent to (13) as follows:
$$ \sum_{n=0}^{\infty} \Biggl( \sum _{m=0}^{\infty}\frac{a_{m}}{m+n+\alpha} \Biggr) ^{2}< \pi^{2}\sum_{m=0}^{\infty}a_{m}^{2} \quad (1\leq\alpha< 2). $$
(14)
For \(0<\alpha<1\), in 1936, Ingham [9] gave the following.
If \(\alpha\geq\frac{1}{2}\), then
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}a_{n}}{m+n+\alpha }\leq \pi\sum _{m=0}^{\infty}a_{m}^{2}; $$
(15)
if \(0<\alpha<\frac{1}{2}\), then
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}a_{n}}{m+n+\alpha }\leq \frac{\pi}{\sin(\alpha\pi)} \sum_{m=0}^{\infty}a_{m}^{2}. $$
(16)
Note that if we set \(x=X+\frac{\alpha}{2}\), \(y=Y+\frac{\alpha}{2}\), \(F(X)=f(X+\frac{\alpha}{2})\) and \(G(Y)=g(Y+\frac{\alpha}{2})\) (\(\alpha \in \mathbf{R}=(-\infty,\infty)\)) in (2), then we obtain
$$ \int_{-\frac{\alpha}{2}}^{\infty}\int_{-\frac{\alpha}{2}}^{\infty } \frac{F(X)G(Y)}{X+Y+\alpha}\, dX\, dY< \pi \biggl( \int_{-\frac{\alpha}{2}}^{\infty }F^{2}(X) \, dX\int_{-\frac{\alpha}{2}}^{\infty}G^{2}(Y)\, dY \biggr) ^{\frac {1}{2}}. $$
(17)
It is said that for \(\alpha\geq\frac{1}{2}\), inequality (17) is an integral analog of (13) (for \(G=F\)) and for \(0<\alpha<\frac {1}{2}\), (17) is not an integral analog of (13), since the two constant factors are different.
In recent years, by using the improved Euler-Maclaurin summation formula and introducing parameters, a few authors gave some more accurate Hilbert-type inequalities as (13) (cf. [1017]).

2 Hardy-Hilbert-type inequalities with a pair of conjugate exponents

2.1 Hardy-Hilbert’s inequalities and the operator expressions

In 1925, by introducing one pair of conjugate exponents \((p,q)\) with \(\frac{1}{p}+\frac{1}{q}=1\), Hardy [18] gave an extension of (1) as follows.
If \(p>1\), \(a_{m},b_{n}\geq0\), such that \(0<\sum_{m=1}^{\infty }a_{m}^{p}<\infty\) and \(0<\sum_{n=1}^{\infty}b_{n}^{q}<\infty\), then
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, $$
(18)
where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible.
The equivalent form of (18) is as follows:
$$ \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{m+n} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p} \sum_{m=1}^{\infty }a_{m}^{p}, $$
(19)
where the constant factor \([\frac{\pi}{\sin(\pi/p)}]^{p}\) is still the best possible.
In the same way, inequalities (12) and (14) (for \(\alpha=1\)) may be extended to the following equivalent forms (cf. [3]):
$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=0}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=0}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(20)
$$\begin{aligned}& \sum_{n=0}^{\infty} \Biggl( \sum _{m=0}^{\infty}\frac{a_{m}}{m+n+1} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p}\sum _{m=0}^{\infty }a_{m}^{p}, \end{aligned}$$
(21)
where the constant factors \(\frac{\pi}{\sin(\pi/p)}\) and \([\frac{\pi }{\sin(\pi/p)}]^{p}\) are the best possible. The equivalent integral analogs of (18) and (19) are given as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\frac{\pi}{p})} \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(22)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{x+y}\,dx \biggr) ^{p}\,dy< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p}\int_{0}^{\infty }f^{p}(x) \,dx, \end{aligned}$$
(23)
with the best possible constant factors. We call (18) Hardy-Hilbert’s inequality and call (22) Hardy-Hilbert’s integral inequality.
Inequality (20) may be expressed in the form of the operator as follows.
If \(l^{p}\) is a space of real sequences, \(T_{p}:l^{p}\rightarrow l^{p}\) is a linear operator, such that for any non-negative sequence \(a=\{a_{m}\}_{m=1}\in l^{p}\), there exists a \(T_{p}a=c=\{c_{n}\} _{n=1}^{\infty }\in l^{p}\), satisfying
$$ c_{n}=(T_{p}a) (n)=\sum_{m=0}^{\infty} \frac{a_{m}}{m+n+1},\quad n\in\mathbf {N}_{0}=\mathbf{N}\cup \{0\}. $$
(24)
For any non-negative sequence \(b=\{b_{n}\}_{n=1}\in l^{q}\), we can indicate the formal inner product of \(T_{p}a\) and b as follows:
$$ (T_{p}a,b)=\sum_{n=0}^{\infty} \Biggl( \sum_{m=0}^{\infty}\frac {a_{m}}{m+n+1} \Biggr) b_{n}=\sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac {a_{m}b_{n}}{m+n+1}. $$
(25)
Setting the norm of a as \(\|a\|_{p}= ( \sum_{n=0}^{\infty }|a_{n}|^{p} ) ^{\frac{1}{p}}\), then inequality (20) may be rewritten as follows:
$$ (T_{p}a,b)< \frac{\pi}{\sin(\frac{\pi}{p})}\|a\|_{p}\|b \|_{q}, $$
(26)
where \(\|a\|_{p},\|b\|_{q}>0\). We call \(T_{p}\) Hardy-Hilbert’s operator.
Similarly, if \(L^{p}(\mathbf{R}_{+})\) is a space of real functions, we may define the following Hardy-Hilbert’s integral operator \(\widetilde {T}_{p}: L^{p}(\mathbf{R}_{+})\rightarrow L^{p}(\mathbf{R}_{+})\) as follows.
For any \(f\ (\geq0)\in L^{p}(\mathbf{R}_{+})\), there exists a \(h=\widetilde{T}_{p}f\in L^{p}(\mathbf{R}_{+})\), satisfying
$$ (\widetilde{T}_{p}f) (y)=h(y)=\int_{0}^{\infty} \frac{f(x)}{x+y}\,dx,\quad y\in \mathbf{R}_{+}. $$
(27)
For any \(g\ (\geq0)\in L^{q}(\mathbf{R}_{+})\), we can indicate the formal inner product of \(\widetilde{T}_{p}f\) and g as follows:
$$ (\widetilde{T}_{p}f,g)=\int_{0}^{\infty} \int_{0}^{\infty}\frac {f(x)g(y)}{x+y}\,dx\,dy. $$
(28)
Setting the norm of f as \(\|f\|_{p}= ( \int_{0}^{\infty }|f(x)|^{p}\,dx ) ^{\frac{1}{p}}\), then inequality (22) may be rewritten as follows:
$$ (\widetilde{T}_{p}f,g)< \frac{\pi}{\sin(\frac{\pi}{p})}\|f\|_{p}\|g \|_{q}. $$
(29)

2.2 Some kinds of Hardy-Hilbert-type inequalities

(1) For \((p,q)\) not being a pair of conjugate exponents, we have the following results (cf. [3], Theorem 339).
If \(p>1\), \(q>1\), \(\frac{1}{p}+\frac{1}{q}\geq1\), \(0<\lambda=2-(\frac {1}{p}+\frac{1}{q})\leq1\), then
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}\leq K \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, $$
(30)
where \(K=K(p,q)\) relates to p, q, only for \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda=2-(\frac{1}{p}+\frac{1}{q})=1\), the constant factor K is the best possible.
The integral analogs of (30) are given as follows:
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy\leq K \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. $$
(31)
We also find an extension of (31) as follows (cf. [4]).
If \(p>1\), \(q>1\), \(\frac{1}{p}+\frac{1}{q}>1\), \(0<\lambda=2-(\frac{1}{p}+\frac {1}{q})<1\), then
$$ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{f(x)g(y)}{|x+y|^{\lambda}}\,dx\,dy\leq k(p,q) \biggl( \int_{-\infty}^{\infty }f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{-\infty}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. $$
(32)
For \(f(x)=g(x)=0\), \(x\in(-\infty,0]\), inequality (32) reduces to (31). Levin [19] also studied the expression forms of the constant factors in (30) and (31). But he did not prove their best possible property. In 1951, Bonsall [20] considered the case of (31) as regards the general kernel.
(2) If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(h(t)>0\), \(\phi(s)=\int_{0}^{\infty }h(t)t^{s-1}\, dt\in\mathbf{R}_{+}\), \(f(x),g(y)\geq0\), then we have the following integral inequalities with the non-homogeneous kernel (cf. [3], Theorem 350):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}h(xy)f(x)g(y) \,dx\,dy \\& \quad < \phi\biggl(\frac{1}{p}\biggr) \biggl( \int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(33)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}h(xy)f(x) \,dx \biggr) ^{p}\,dy< \phi ^{p}\biggl(\frac{1}{p} \biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(34)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}h(xy)f(x) \,dx \biggr) ^{p}\,dy< \phi ^{p}\biggl(\frac{1}{p} \biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(35)
$$\begin{aligned}& \int_{0}^{\infty}y^{p-2} \biggl( \int _{0}^{\infty}h(xy)f(x)\,dx \biggr) ^{p}\,dy< \phi^{p}\biggl(\frac{1}{q}\biggr)\int_{0}^{\infty}f^{p}(x) \,dx, \end{aligned}$$
(36)
where the integrals on the right-hand side are positive. The authors did not proved that the above constant factors are the best possible.
(3) If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(h(t)>0\) is decreasing with respect to \(t>0\), \(\phi(s)=\int_{0}^{\infty}h(t)t^{s-1}\, dt\in\mathbf{R}_{+}\), \(f(x),a_{n}\geq0\), then we have the following half-discrete inequalities (cf. [3], Theorem 351):
$$\begin{aligned}& \int_{0}^{\infty} \Biggl( \sum _{n=1}^{\infty}h(nx)a_{n} \Biggr) ^{p}\,dx< \phi ^{p}\biggl(\frac{1}{p}\biggr)\sum _{n=1}^{\infty}n^{p-2}a_{n}^{p}, \end{aligned}$$
(37)
$$\begin{aligned}& \sum_{n=1}^{\infty} \biggl( \int _{0}^{\infty}h(nx)f(x)\,dx \biggr) ^{p}< \phi ^{p}\biggl(\frac{1}{p}\biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(38)
$$\begin{aligned}& \int_{0}^{\infty}x^{p-2} \Biggl( \sum _{n=1}^{\infty}h(nx)a_{n} \Biggr) ^{p}\,dx< \phi^{p}\biggl(\frac{1}{q}\biggr)\sum _{n=1}^{\infty}a_{n}^{p}, \end{aligned}$$
(39)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p-2} \biggl( \int_{0}^{\infty}h(nx)f(x)\,dx \biggr) ^{p}< \phi^{p}\biggl(\frac{1}{q}\biggr)\int_{0}^{\infty}f^{p}(x) \,dx, \end{aligned}$$
(40)
where the integrals and series on the right-hand side are positive. The authors also did not prove that the above constant factors are the best possible.

2.3 Hardy-Hilbert-type inequalities with the general homogeneous kernel of degree −1

If \(\alpha\in\mathbf{R,}\) the function \(k(x,y)\) is measurable in \(\mathbf{R}_{+}^{2}\), satisfying for any \(x,y,u>0\), \(k(ux,uy)=u^{\alpha }k(x,y)\), then we call \(k(x,y)\) the homogeneous function of degree α.
In 1934, Hardy et al. published the following theorem (cf. [3], Theorem 318 and Theorem 319).
Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(k_{1}(x,y)\) (≥0) is a homogeneous function of degree −1 in \(\mathbf{R}_{+}^{2}\). If \(k_{p}=\int_{0}^{\infty}k_{1}(u,1)u^{-\frac{1}{p}}\, du\) is finite, then we have \(k_{p}=\int_{0}^{\infty}k_{1}(1,u)u^{-\frac{1}{q}}\, du\) and the following equivalent inequalities:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{1}(x,y)f(x)g(y) \,dx\,dy \\& \quad \leq k_{p} \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(41)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}k_{1}(x,y)f(x) \,dx \biggr) ^{p}\,dy\leq k_{p}^{p}\int _{0}^{\infty}f^{p}(x)\,dx, \end{aligned}$$
(42)
where the constant \(k_{p}\) is the best possible.
Moreover, if both \(k_{1}(u,1)u^{\frac{-1}{p}}\) and \(k_{1}(1,u)u^{\frac {-1}{q}} \) are decreasing in \(\mathbf{R}_{+}\), then we have the following equivalent forms:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}k_{1}(m,n)a_{m}b_{n} \leq k_{p} \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(43)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}k_{1}(m,n)a_{m} \Biggr) ^{p}\leq k_{p}^{p}\sum _{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(44)
For \(0< p<1\), if \(k_{p}\) is finite, then we have the reverses of (41) and (42). (Note that we have not seen any proof of (41) and (42), and the reverse examples in the book [3].)
We name \(k_{1}(x,y)\) the kernel of (41) and (42). If all the integrals and series in the right-hand side of inequalities (41)-(44) are positive, then we can get the following particular examples (cf. [3]):
(i) For \(k_{1}(x,y)=\frac{1}{x+y}\), (41)-(44) deduce to (22), (23), (18), and (19).
(ii) For \(k_{1}(x,y)=\frac{1}{\max\{x,y\}}\), (41)-(44) deduce to the following two pairs of equivalent forms:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x,y\}}\,dx\,dy< pq \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(45)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{\max\{x,y\}}\,dx \biggr) ^{p}\,dy< (pq)^{p} \int_{0}^{\infty}f^{p}(x)\,dx; \end{aligned}$$
(46)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\max\{m,n\}}< pq \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(47)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{\max\{m,n\} } \Biggr) ^{p}< (pq)^{p}\sum_{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(48)
(iii) For \(k_{1}(x,y)=\frac{\ln(x/y)}{x-y}\), (41)-(44) deduce to the following two pairs of equivalent forms:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)g(y)}{x-y}\,dx\,dy \\& \quad < \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2} \biggl( \int _{0}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(49)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)}{x-y}\,dx \biggr) ^{p}\,dy< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2p}\int_{0}^{\infty}f^{p}(x) \,dx; \end{aligned}$$
(50)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}b_{n}}{m-n}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2} \Biggl( \sum _{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(51)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}}{m-n} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2p}\sum _{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(52)
Note that the constant factors in the above inequalities are all the best possible. We call (47) and (51) Hardy-Littlewood-Polya’s inequalities, or H-L-P inequalities. We find that the kernels in the above inequalities are all decreasing. But this is not necessary. For example, we find the following two pairs of equivalent forms with the non-decreasing kernel (cf. [21, 22]):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{\max\{x,y\}}\,dx\,dy \\ & \quad < \bigl(p^{2}+q^{2}\bigr) \biggl( \int _{0}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p} } \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(53)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)}{\max\{x,y\}}\,dx \biggr) ^{p}\,dy< \bigl(p^{2}+q^{2} \bigr)^{p}\int_{0}^{\infty}f^{p}(x) \,dx; \end{aligned}$$
(54)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{\max\{m,n\}}< \bigl(p^{2}+q^{2} \bigr) \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(55)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}}{\max\{m,n\}} \Biggr) ^{p}< \bigl(p^{2}+q^{2}\bigr)^{p}\sum _{n=1}^{\infty}a_{n}^{p}, \end{aligned}$$
(56)
where the constant factors \(p^{2}+q^{2}\) and \((p^{2}+q^{2})^{p}\) are the best possible.
Other inequalities of this type with the best constants are provided as follows (cf. [23, 24]):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{x+y}\,dx\,dy \\& \quad < c_{0}(p) \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}g^{p}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(57)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)}{x+y}\,dx \biggr) ^{p}\,dy< c_{0}^{p}(p) \int_{0}^{\infty}f^{p}(x)\,dx; \end{aligned}$$
(58)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{m+n}< c_{0}(2) \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(59)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}}{m+n} \Biggr) ^{2}< c_{0}^{2}(2)\sum _{n=1}^{\infty}a_{n}^{2}, \end{aligned}$$
(60)
where the constant factor \(c_{0}(p)\) is indicated by
$$ c_{0}(p)=2\sum_{n=1}^{\infty}(-1)^{n-1} \biggl[ \frac{1}{(n-\frac {1}{p})^{2}}-\frac{1}{(n-\frac{1}{q})^{2}} \biggr] . $$

2.4 Two multiple Hardy-Hilbert-type inequalities with the homogeneous kernels of degree \(-n+1\)

Suppose \(n\in\mathbf{N}\backslash\{1\}\), n numbers \(p,q,\ldots,r\) satisfying \(p,q,\ldots,r>1\), \(p^{-1}+q^{-1}+\cdots+r^{-1}=1\), \(k(x,y,\ldots,z)\geq0\) is a homogeneous function of degree \(-n+1\). If
$$ k=\int_{0}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k(1,y,\ldots ,z)y^{-\frac{1}{q}} \cdots z^{-\frac{1}{r}}\,dy\cdots \,dz $$
is a finite number, \(f,g,\ldots, h\) are non-negative measurable functions in \(\mathbf{R}_{+}\), then we have the following multiple Hilbert-type integral inequality (cf. [3], Theorem 322):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k(x,y,\ldots ,z)f(x)g(y)\cdots h(z)\,dx\,dy\cdots \,dz \\& \quad \leq k \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}\cdots \biggl( \int_{0}^{\infty}h^{r}(z) \,dz \biggr) ^{\frac{1}{r}}. \end{aligned}$$
(61)
Moreover, if \(a_{m},b_{n},\ldots,c_{s}\geq0\), \(k(1,y,\ldots ,z)x^{0}y^{-\frac{1}{q}}\cdots z^{-\frac{1}{r}}\), \(k(x,1,\ldots,z)\times x^{-\frac {1}{p}}y^{0}\cdots z^{-\frac{1}{r}}\), … , \(k(x,y,\ldots,1)x^{-\frac {1}{p}}y^{-\frac{1}{q}}\cdots z^{0}\) are all decreasing with respect to any single variable in \(\mathbf{R}_{+}\), then we have
$$\begin{aligned}& \sum_{s=1}^{\infty}\cdots\sum _{n=1}^{\infty}\sum_{m=1}^{\infty }k(m,n, \ldots,s)a_{m}b_{n}\cdots c_{s} \\& \quad \leq k \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}\cdots \Biggl( \sum_{s=1}^{\infty}c_{s}^{r} \Biggr) ^{\frac{1}{r}}. \end{aligned}$$
(62)
For \(n=2\), inequalities (61) and (62) reduce, respectively, to (41) and (43).

3 Modern research for Hilbert’s inequalities and Hardy-Hilbert’s inequalities

3.1 Modern research for Hilbert’s integral inequality

(1) In 1979, based on an improvement of Hölder’s inequality, Hu [25] gave a refinement of (2) (for \(f=g\)) as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x+y}\,dx\,dy \\& \quad < \pi \biggl[ \biggl( \int_{0}^{\infty}f^{2}(x) \,dx \biggr) ^{2}-\frac {1}{4} \biggl( \int _{0}^{\infty}f^{2}(x)\cos\sqrt{x}\,dx \biggr) ^{2} \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(63)
Since then, he published many interesting results similar to (63) (cf. [6]).
(2) In 1998, Pachpatte [26] gave an inequality similar to (2) as follows.
For \(a,b>0\),
$$\begin{aligned}& \int_{0}^{a}\int_{0}^{b} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad < \frac{\sqrt{ab}}{2} \biggl[ \int_{0}^{a}(a-x)f^{\prime 2}(x) \,dx\int_{0}^{b}(b-y)g^{\prime2}(y)\,dy \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(64)
Some improvements and extensions were made by Zhao et al. [2729]. We can find other work of Pachpatte in [30].
(3) In 1998, by introducing parameters \(\lambda\in(0,1]\) and \(a,b\in \mathbf{R}_{+}\) (\(a< b\)), Yang [31] gave an extension of (2) as follows:
$$\begin{aligned}& \int_{a}^{b}\int_{a}^{b} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl[ 1-\biggl( \frac{a}{b}\biggr)^{\frac {\lambda}{4}} \biggr] \biggl( \int_{a}^{b}x^{1-\lambda }f^{2}(x) \,dx\int_{a}^{b}y^{1-\lambda}g^{2}(y) \,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(65)
where \(B(u,v)\) is the beta function. In 1999, Kuang [32] gave another extension of (2) as follows.
For \(\lambda\in(\frac{1}{2},1]\),
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x^{\lambda }+y^{\lambda}}\,dx\,dy< \frac{\pi}{\lambda\sin(\frac{\pi}{2\lambda})} \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}. $$
(66)
We can find other work of Kuang in [5] and [33].
(4) In 1999, by using the methods of algebra and analysis, Gao [34] gave an improvement of (2) as follows:
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x+y}\,dx\,dy< \pi\sqrt {1-R} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, $$
(67)
where \(R=\frac{1}{\pi}(\frac{u}{\|g\|}-\frac{v}{\|f\|})^{2}\), \(u=\sqrt {\frac{2}{\pi}}(g,e)\), \(v=\sqrt{2\pi}(f,e^{-x})\), \(e(y)=\int_{0}^{\infty}\frac {e^{x}}{x+y}\,dx\). We can find other work of Gao and Hsu in [35].
(5) In 2002, by using the operator theory, Zhang [36] gave an improvement of (2) as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad \leq \frac{\pi}{\sqrt{2}} \biggl[ \int_{0}^{\infty }f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy+ \biggl( \int_{0}^{\infty }f(x)g(x)\,dx \biggr) ^{2} \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(68)

3.2 On the way of weight coefficients for giving a strengthened version of Hilbert’s inequality

In 1991, for giving an improvement of (1), Hsu and Wang [37] raised the way of weight coefficient as follows.
At first, by using Cauchy’s inequality in the left-hand side of (1), it follows:
$$\begin{aligned} I =&\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}=\sum _{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{m+n} \biggl[ \biggl(\frac {m}{n}\biggr)^{\frac{1}{4}}a_{m} \biggr] \biggl[ \biggl(\frac{n}{m}\biggr)^{\frac{1}{4}}b_{n} \biggr] \\ \leq& \Biggl\{ \sum_{m=1}^{\infty} \Biggl[ \sum_{n=1}^{\infty}\frac {1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}} \Biggr] a_{m}^{2} \sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\frac{1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}} \Biggr] b_{n}^{2} \Biggr\} ^{\frac{1}{2}}. \end{aligned}$$
(69)
Then define the weight coefficient
$$ \omega(n):=\sum_{m=1}^{\infty} \frac{1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}},\quad n\in \mathbf{N}, $$
(70)
and rewrite (69) as follows:
$$ I\leq \Biggl( \sum_{m=1}^{\infty} \omega(m)a_{m}^{2}\sum_{n=1}^{\infty } \omega(n)b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(71)
Afterwards, setting
$$ \omega(n)=\pi-\frac{\theta(n)}{n^{1/2}},\quad n\in\mathbf{N}, $$
(72)
where \(\theta(n)=(\pi-\omega(n))n^{1/2}\), and estimating the series of \(\theta(n)\), it follows that
$$ \theta(n)= \Biggl[ \pi-\sum_{m=1}^{\infty} \frac{1}{m+n}\biggl(\frac {m}{n}\biggr)^{\frac{1}{2}} \Biggr] n^{1/2}>\theta=1.1213^{+}. $$
(73)
Then by (72), it yields
$$ \omega(n)< \pi-\frac{\theta}{n^{1/2}},\quad n\in\mathbf{N},\theta=1.1213^{+}. $$
(74)
In view of (71), a strengthened version of (1) is given as follows:
$$ I< \Biggl[ \sum_{m=1}^{\infty} \biggl( \pi- \frac{\theta}{m^{1/2}} \biggr) a_{m}^{2}\sum _{n=1}^{\infty} \biggl( \pi-\frac{\theta}{n^{1/2}} \biggr) b_{n}^{2} \Biggr] ^{\frac{1}{2}}. $$
(75)
Hsu also raised the open problem of obtaining the best value of (75). In 1992, Gao [38] gave the best value \(\theta_{0}=1.281669^{+}\).
Still in 1991, by using the above method, a strengthened version of (8) was given by [39] as follows:
$$\begin{aligned} I < & \Biggl\{ \sum_{m=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{p-1}{m^{1/p}+m^{-1/q}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &{}\times \Biggl\{ \sum_{n=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{q-1}{n^{1/q}+n^{-1/p}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(76)
In 1997, by using the method of weight coefficients and the improved Euler-Maclaurin summation formula, Yang and Gao [40] gave
$$ I < \Biggl\{ \sum_{m=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{1-\gamma}{m^{1/p}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{1-\gamma}{n^{1/q}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}, $$
(77)
where \(1-\gamma=0.42278433^{+}\) (γ is the Euler constant). We can find similar work in Gao and Yang [41].
In 1998, Yang and Debnath [42] gave another, strengthened, version of (8), which is an improvement of (76). We can find some strengthened versions of (12) and (20) in [4345].

3.3 Hilbert’s inequalities and Hardy-Hilbert’s inequalities with independent parameters

In 1998, by using the optimized weight coefficients and introducing an independent parameter \(\lambda\in(0,1]\), Yang [31] gave an extension of (2) as follows.
If \(0<\int_{0}^{\infty}x^{1-\lambda}f^{2}(x)\,dx<\infty\) and \(0<\int_{0}^{\infty}y^{1-\lambda}g^{2}(y)\,dy<\infty\), then
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda}f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(78)
where the constant factor \(B(\frac{\lambda}{2},\frac{\lambda}{2})\) is the best possible. The proof about the best possible property of the constant factor was given by [46], and the expressions of the beta function \(B(u,v)\) are given in Wang and Guo [47]:
$$\begin{aligned} B(u,v) =&\int_{0}^{\infty}\frac{t^{u-1}\, dt}{(1+t)^{u+v}}= \int_{0}^{1}(1-t)^{u-1}t^{v-1}\, dt \\ =&\int_{1}^{\infty}\frac{(t-1)^{u-1}\, dt}{t^{u+v}}\quad (u,v>0). \end{aligned}$$
(79)
Some extensions of (18), (20), and (22) were given by [4850] as follows.
If \(\lambda>2-\min\{p,q\}\), then
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \biggl( \int _{0}^{\infty}x^{1-\lambda}f^{p}(x)\,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}y^{1-\lambda}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}; \end{aligned}$$
(80)
if \(2-\min\{p,q\}<\lambda\leq2\), then
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}} \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \Biggl( \sum _{m=1}^{\infty}m^{1-\lambda}a_{m}^{p} \Biggr) ^{\frac {1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{1-\lambda}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(81)
$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac {a_{m}b_{n}}{(m+n+1)^{\lambda}} \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \Biggl[ \sum _{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{1-\lambda }a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+ \frac{1}{2} \biggr) ^{1-\lambda}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(82)
where the constant factor \(B(\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q})\) is the best possible.
Yang [51] also proved that (81) is valid for \(p=2\) and \(\lambda \in(0,4]\). Yang [52, 53] gave another extensions of (18) and (20) as follows.
If \(0<\lambda\leq\min\{p,q\}\), then
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m^{\lambda }+n^{\lambda}} < \frac{\pi}{\lambda\sin(\frac{\pi}{p})} \Biggl[ \sum_{m=1}^{\infty}m^{(p-1)(1-\lambda)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{(q-1)(1-\lambda )}b_{n}^{q} \Biggr] ^{\frac{1}{q}}; $$
(83)
if \(0<\lambda\leq1\), then
$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{(m+\frac{1}{2} )^{\lambda}+(n+\frac{1}{2})^{\lambda}} \\& \quad < \frac{\pi}{\lambda\sin(\frac {\pi }{p})} \Biggl[ \sum_{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{p-1-\lambda }a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+\frac{1}{2} \biggr) ^{q-1-\lambda}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(84)
In 2004, Yang [54] discovered the following dual form of (18):
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}m^{p-2}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{q-2}b_{n}^{q} \Biggr) ^{\frac {1}{q}}. $$
(85)
Inequality (85) is similar to (18) but different and for \(p=2\), both of them reduce to (1).
For \(\lambda=1\), (84) reduces to the dual form of (20) as follows:
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1} < \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl[ \sum_{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{p-2}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+\frac {1}{2} \biggr) ^{q-2}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. $$
(86)
We can find some best extensions of the H-L-P inequalities such as (37)-(48) in [5561], by introducing some independent parameters.
In 2001, by introducing some parameters, Hong [62] gave a multiple integral inequality, which is an extension of (18). He et al. [63] gave a similar result for particular conjugate exponents. For making an improvement of their work, Yang [64] gave the following inequality, which is a best extension of (18).
If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(\sum_{i=1}^{n}\frac {1}{p_{i}}=1\), \(\lambda>n-\min_{1\leq i\leq n}\{p_{i}\}\), \(f_{i}(t)\geq0\), and \(0<\int_{0}^{\infty}t^{n-1-\lambda}f_{i}^{p_{i}}(t)\, dt<\infty\) (\(i=1,2,\ldots,n\)), then we have
$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{\lambda }}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n} \biggl( \frac{p_{i}+\lambda -n}{p_{i}} \biggr) \biggl( \int_{0}^{\infty}t^{n-1-\lambda }f_{i}^{p_{i}}(t) \,dt \biggr) ^{\frac{1}{p_{i}}}, \end{aligned}$$
(87)
where the constant factor \(\frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n}(\frac{p_{i}+\lambda-n}{p_{i}})\) is the best possible. In particular, for \(\lambda =n-1\), it follows that
$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{n-1}}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{(n-2)!}\prod_{i=1}^{n} \biggl( 1-\frac{1}{p_{i}} \biggr) \biggl( \int_{0}^{\infty}f_{i}^{p_{i}}(t) \,dt \biggr) ^{\frac{1}{p_{i}}}. \end{aligned}$$
(88)
In 2003, Yang and Rassias [65] introduced the method of weight coefficients and considered its applications to Hilbert-type inequalities. They summarized how to use the method of weight coefficients to obtain some new improvements and generalizations of the Hilbert-type inequalities. Since then, a number of authors discussed this problem (cf. [6686]). But how to give a best extension of inequalities (85) and (18) was solved in 2004 by introducing two pairs of conjugate exponents.

3.4 Hilbert-type inequalities with two conjugate exponents and multi-parameters

In 2004, by introducing an independent parameter \(\lambda>0\) and two pairs of conjugate exponents \((p,q)\) and \((r,s)\) with \(\frac {1}{p}+\frac{1}{q}=\frac{1}{r}+\frac{1}{s}=1\), Yang [87] gave an extension of (2) as follows.
If \(p,r>1\), and the integrals of the right-hand side are positive, then
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x^{\lambda }+y^{\lambda}}\,dx\,dy \\& \quad < \frac{\pi}{\lambda\sin(\frac{\pi}{r})} \biggl[ \int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac {1}{q}}, \end{aligned}$$
(89)
where the constant factor \(\frac{\pi}{\lambda\sin(\frac{\pi}{r})}\) is the best possible.
For \(\lambda=1\), \(r=q\), \(s=p\), inequality (89) reduces to (22); for \(\lambda=1\), \(r=p\), \(s=q\), inequality (89) reduces to the dual form of (22) as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad < \frac{\pi}{\sin(\frac{\pi}{p})} \biggl( \int_{0}^{\infty }x^{p-2}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }y^{q-2}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(90)
In 2005, by introducing an independent parameter \(\lambda>0\), and two pairs of generalized conjugate exponents \((p_{1},p_{2},\ldots,p_{n})\) and \((r_{1},r_{2},\ldots,r_{n})\) with \(\sum_{i=1}^{n}\frac{1}{p_{i}}=\sum_{i=1}^{n}\frac{1}{r_{i}}=1\), Yang et al. [88] gave a multiple integral inequality as follows.
For \(p_{i},r_{i}>1\) (\(i=1,2,\ldots,n\)),
$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{\lambda }}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n} \biggl(\frac{\lambda }{r_{i}}\biggr) \biggl[ \int_{0}^{\infty}t^{p_{i}(1-\frac{\lambda }{r_{i}})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(91)
where the constant factor \(\frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n}(\frac{\lambda}{r_{i}})\) is the best possible. For \(r_{i}=\frac{p_{i}\lambda }{p_{i}-\lambda-n}\) (\(i=1,2,\ldots,n\)), inequality (91) reduces to (87); for \(n=2\), \(p_{1}=p\), \(p_{2}=q\), \(r_{1}=r\), and \(r_{2}=s\), inequality (91) reduces to the following:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \biggl[ \int _{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s} )-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(92)
It is obvious that inequality (92) is another best extension of (22).
In 2006, by using two pairs of conjugate exponents \((p,q)\) and \((r,s)\) with \(p,r>1\), Hong [89] gave a multi-variable integral inequality as follows.
If \(\mathbf{R}_{+}^{n}=\{x=(x_{1},x_{2},\ldots ,x_{n});x_{i}>0,i=1,2,\ldots ,n\}\), \(\alpha,\beta, \lambda>0\), \(\|x\|_{\alpha }=(\sum_{i=1}^{n}x_{i}^{\alpha})^{\frac{1}{\alpha}}\), \(f,g\geq0\), \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{p(n-\frac{\beta\lambda}{r})-n}f^{p}(x)\,dx<\infty\) and \(0<\int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha }^{q(n-\frac{\beta\lambda}{s})-n}g^{q}(y)\,dy<\infty\), then
$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{n}}\frac{f(x)g(y)\,dx\,dy}{(\|x\|_{\alpha}^{\beta}+\|y\|_{\alpha}^{\beta})^{\lambda}} \\& \quad < \frac {\Gamma ^{n}(\frac{1}{\alpha})}{\beta\alpha^{n-1}\Gamma(\frac{n}{\alpha})}B \biggl( \frac{\lambda}{r}, \frac{\lambda}{s} \biggr) \biggl[ \int_{\mathbf{R}_{+}^{n}}\|x \|_{\alpha}^{p(n-\frac{\beta \lambda}{r})-n}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\& \qquad {}\times\biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha}^{q(n-\frac{\beta\lambda }{s})-n}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(93)
where the constant factor \(\frac{\Gamma^{n}(\frac{1}{\alpha})}{\beta \alpha^{n-1}\Gamma(\frac{n}{\alpha})}B(\frac{\lambda}{r},\frac {\lambda}{s})\) is the best possible. In particular, for \(n=1\), (93) reduces to Hong’s work in [90]; for \(n=\beta=1\), (93) reduces to (92). In 2007, Zhong and Yang [91] generalized (93) to a general homogeneous kernel and proposed the reversion. Some other results on the multi-dimensional Hilbert-type inequalities are provided by [9295].
We can find another inequality with two parameters as follows (cf. [96]):
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(m^{\alpha }+n^{\alpha})^{\lambda}}< \frac{1}{\alpha}B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \Biggl[ \sum_{m=1}^{\infty}m^{p(1-\frac{\alpha\lambda}{r})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\frac{\alpha \lambda }{s})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, $$
(94)
where \(\alpha,\lambda>0\), \(\alpha\lambda\leq\min\{r,s\}\). In particular, for \(\alpha=1\), we have
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}} < B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \Biggl[ \sum _{m=1}^{\infty}m^{p(1-\frac{\lambda}{r})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\frac{\lambda }{s})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. $$
(95)
For \(\lambda=1\), \(r=q\), (95) reduces to (18), and for \(\lambda =1\), \(r=p\), (95) reduces to (85). Some other results are provided by [9799].
Also we can see the reverse form as follows (cf. [100]):
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{(m+n+1)^{2}} > 2 \Biggl\{ \sum_{m=0}^{\infty} \biggl[ 1-\frac{1}{4(m+1)^{2}} \biggr] \frac{a_{m}^{p}}{2m+1} \Biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n=0}^{\infty}\frac {b_{n}^{q}}{2n+1} \Biggr\} ^{\frac{1}{q}}, $$
(96)
where \(0< p<1\), \(\frac{1}{p}+\frac{1}{q}=1\). The other results on the reverse of the Hilbert-type inequalities are found in [101107].
In 2006, Xin [108] gave a best extension of H-L-P integral inequality (41) as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})}{x^{\lambda }-y^{\lambda}}f(x)g(y)\,dx\,dy \\& \quad < \biggl[ \frac{\pi}{\sin(\frac{\pi}{r})} \biggr] ^{2} \biggl[ \int _{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x)\,dx \biggr] ^{\frac {1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(97)
Zhong and Yang [109] gave an extension of another H-L-P integral inequality (37) as follows:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x^{\lambda },y^{\lambda}\}}\,dx\,dy \\& \quad < \frac{rs}{\lambda} \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r} )-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}; \end{aligned}$$
(98)
Zhong and Yang [110] also gave the reverse form of (98).
Considering a particular kernel, Yang [111] gave
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(\sqrt {m}+\sqrt{n})\sqrt{\max\{m,n\}}} \\& \quad < 4\ln2 \Biggl( \sum_{m=1}^{\infty}m^{\frac{p}{2}-1}a_{m}^{p} \Biggr) ^{ \frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{\frac{q}{2}-1}b_{n}^{q} \Biggr) ^{\frac{1}{q}}. \end{aligned}$$
(99)
He also gave (cf. [112])
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(m+an)^{2}+n^{2}} \\& \quad < \biggl( \frac{\pi}{2}-\arctan a \biggr) \Biggl( \sum _{m=1}^{\infty }\frac{a_{m}^{p}}{m} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}\frac {b_{n}^{q}}{n} \Biggr) ^{\frac{1}{q}}\quad (a\geq0). \end{aligned}$$
(100)
By using residue theory, Yang [113] obtained
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+ay)(x+by)(x+cy)}\,dx\,dy \\& \quad < k \biggl( \int_{0}^{\infty}x^{-\frac{p}{2}-1}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}y^{-\frac{q}{2}-1}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(101)
where \(k=\frac{1}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt {c})}\) (\(a,b,c>0\)).
The constant factors in the above new inequalities are all the best possible. We can find some other new work in [114120].
In 2005, Yang [121] gave a half-discrete inequality with the kernel \(\frac{1}{(1+nx)^{\lambda}}\) by introducing a variable and proved that the constant factor is the best possible. In 2011, Yang [122] deduced a half-discrete Hardy-Hilbert inequality with the best possible constant factor \(B(\lambda_{1},\lambda_{2})\):
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}f(x)}{(x+n)^{\lambda}}\,dx \\& \quad < B(\lambda_{1},\lambda_{2}) \biggl[ \int _{0}^{\infty}x^{p(1-\lambda _{1})-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(102)
where \(\lambda_{1}>0\), \(0<\lambda_{2}\leq1\), \(\lambda_{1}+\lambda _{2}=\lambda\).
Zhong et al. [123, 124] investigated several half-discrete Hilbert-type inequalities. A half-discrete Hilbert-type inequality with a general homogeneous kernel \(k_{\lambda}(x,n)\) of degree \(-\lambda\in\mathbf{R}\) and a best constant factor \(k ( \lambda _{1} ) \) was obtained, which is an extension of (102) (cf. [125]). Also a half-discrete Hilbert-type inequality with a general non-homogeneous kernel \(k_{\lambda}(1,xn)\) and a best constant factor was given by Yang [126].

3.5 Modern research for Hilbert-type operators

Suppose that H is a separable Hilbert space and \(T:H\rightarrow H\) is a bounded self-adjoint semi-positive definite operator. In 2002, Zhang [36] gave the following inequality:
$$ (a,Tb)^{2}\leq\frac{\|T\|^{2}}{2}\bigl(\|a\|^{2}\|b \|^{2}+(a,b)^{2}\bigr)\quad (a,b\in H), $$
(103)
where \((a,b)\) is the inner product of a and b, and \(\|a\|=\sqrt{(a,a)}\) is the norm of a. Since the Hilbert integral operator defined by (7) satisfies the condition of (103) with \(\|\widetilde{T}\|=\pi\), inequality (2) may be improved as (68). Since the operator \(T_{p}\) defined by (24) (for \(p=q=2\)) satisfies the condition of (103) (cf. [7]), we may improve (12) to the following form:
$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \frac {\pi}{\sqrt{2}} \Biggl[ \sum_{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty }b_{n}^{2}+ \Biggl(\sum_{n=0}^{\infty}a_{n}b_{n} \Biggr)^{2} \Biggr] ^{\frac{1}{2}}. $$
(104)
The key of applying (103) is to obtain the norm of the operator and to show the property of semi-definite. Now, we consider the concept and the properties of Hilbert-type integral operator as follows.
Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(L^{r}(\mathbf{R}_{+})\) (\(r=p,q\)) are real normal linear spaces and \(k(x,y)\) is a non-negative symmetric measurable function in \(\mathbf{R}_{+}^{2}\) satisfying
$$ \int_{0}^{\infty}k(x,t) \biggl(\frac{x}{t} \biggr)^{\frac{1}{r}}\,dt=k_{0}(p)\in \mathbf{R}\quad (x>0). $$
We define an integral operator as
$$ T:L^{r}(\mathbf{R}_{+})\rightarrow L^{r}( \mathbf{R}_{+})\quad (r=p,q), $$
for any \(f\ (\geq0)\in L^{p}(\mathbf{R}_{+})\), there exists a \(h=Tf\in L^{p}(\mathbf{R}_{+})\), such that
$$ (Tf) (y)=h(y)=\int_{0}^{\infty}k(x,y)f(x)\,dx\quad (y>0); $$
(105)
or for any \(g\ (\geq0)\in L^{q}(\mathbf{R}_{+})\), there exists a \(\tilde{h}=Tg\in L^{q}(\mathbf{R}_{+})\), such that
$$ (Tg) (x)=\tilde{h}(x)=\int_{0}^{\infty}k(x,y)g(y) \,dy\quad (x>0). $$
(106)
In 2006, Yang [127] proved that the operator T defined by (105) or (106) are bounded with \(\|T\|\leq k_{0}(p)\). The following are some results in this paper.
If \(\varepsilon>0\), is small enough and the integral \(\int_{0}^{\infty }k(x,t)(\frac{x}{t})^{\frac{1+\varepsilon}{r}}\,dt\) (\(r=p,q\); \(x>0\)) is convergent to a constant \(k_{\varepsilon}(p)\) independent of x satisfying \(k_{\varepsilon}(p)=k_{0}(p)+o(1)\) (\(\varepsilon\rightarrow 0^{+}\)), then \(\|T\|=k_{0}(p)\). If \(\|T\|>0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p},\|g\|_{q}>0\), then we have the following equivalent inequalities:
$$\begin{aligned}& (Tf,g) < \|T\|\cdot\|f\|_{p}\|g\|_{q}, \end{aligned}$$
(107)
$$\begin{aligned}& \|Tf\|_{p} < \|T\|\cdot\|f\|_{p}. \end{aligned}$$
(108)
Some particular cases are considered in this paper.
Yang [128] also considered some properties of Hilbert-type integral operator (for \(p=q=2\)). For the homogeneous kernel of degree −1, Yang [129] considered some sufficient conditions to obtain \(\|T\|=k_{0}(p)\). We can find some properties of the discrete Hilbert-type operator in the disperse space in Yang [130133]. A multiple integral operator is scored by Bényi and Oh [134]. In 2009, Yang [135] summarized the above part results. Some other works about Hilbert-type operators and inequalities with the general homogeneous kernel and multi-parameters were provided by [136145].
During 2009-2014, Yang published six books about the theory of Hilbert-type operators with their norms and inequalities. On January of 2009, Yang’s first book about the integral and discrete Hilbert-type operators with the general homogeneous kernels of non-negative number degree and two pairs of conjugate exponents as well as the related inequalities was published by Chinese Science Press (cf. [146]). On October of 2009, Yang’s second book about Hilbert-type integral operators with the general homogeneous kernels of real number degree and two pairs of conjugate exponents as well as their inequalities was published by Bentham Science Publishers Ltd. (cf. [147]). On February of 2011, Yang’s third book about discrete Hilbert-type operators as well as the related inequalities with the same kernels and parameters in integrals was published by Bentham Science Publishers Ltd. (cf. [148]). In 2012-2013, Yang published two books that considered multiple half-discrete Hilbert-type operators and their inequalities (cf. [149, 150]). In 2014, Yang and Debnath published a book considering general half-discrete operators and their inequalities. These six books provide an extensive account of these types of operators and inequalities successfully.

4 Yang-Hilbert-type inequalities with two pairs of conjugate exponents and independent parameters

4.1 Yang-Hilbert-type integral inequalities

In 2009, Yang [147] (Theorem 5.1.6) gave an extension of (91) as follows.
If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(r_{i}\neq0\) (\(i=1,2,\ldots,n\)), \(\sum_{i=1}^{n}\frac{1}{p_{i}}=\sum_{i=1}^{n}\frac{1}{r_{i}}=1\), \(\lambda \in \mathbf{R}\), \(k_{\lambda}(x_{1},\ldots,x_{n})\) (≥0) is a homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\),
$$ k_{\lambda}(r_{1},\ldots,r_{n-1}) = \int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda}(u_{1},\ldots ,u_{n-1},1)\prod_{j=1}^{n-1}u_{j}^{\frac{\lambda}{r_{j}}-1} \, du_{1}\cdots \, du_{n-1}\in\mathbf{R}_{+}, $$
\(f_{i}(t)\geq0\) and \(0<\int_{0}^{\infty}t^{p_{i}(1-\frac{\lambda }{r_{i}})-1}f_{i}^{p_{i}}(t)\,dt<\infty\) (\(i=1,2,\ldots,n\)), then we have the following inequality:
$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty}k_{\lambda}(x_{1}, \ldots ,x_{n})\prod_{i=1}^{n}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{n} \\& \quad < k_{\lambda}(r_{1},\ldots,r_{n-1}) \biggl[ \int _{0}^{\infty }t^{p_{i}(1-\frac{\lambda}{r_{i}})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(109)
where the constant factor \(k_{\lambda}(r_{1},\ldots,r_{n-1})\) is the best possible.
In this reference, the equivalent form of (109), the reverses, the operator expressions, and some particular examples are provided.
In Theorem 6.14 of this book, Yang also gave the following multi-dimensional integral inequalities, an extension of (93).
If \(\lambda\in\mathbf{R}\), \(p>1\), \(r,s\neq0\), \(\frac{1}{p}+\frac{1}{q}=\frac {1}{r}+\frac{1}{s}=1\), \(k_{\lambda}(x,y)\) (≥0) is a homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\),
$$ k_{\lambda}(r)=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\frac{\lambda}{r} -1} \, du\in\mathbf{R}_{+}, $$
\(x,y\in\mathbf{R}_{+}^{n}\), \(\alpha>0\), \(f,g\geq0\), \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{p(n-\frac{\lambda}{r})-n}f^{p}(x)\,dx<\infty \), and \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{q(n-\frac{\lambda}{s})-n}g^{q}(x)\,dx<\infty\), then we have the following inequality:
$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{n}}k_{\lambda } \bigl(\Vert x\Vert _{\alpha },\|y\|_{\alpha}\bigr)f(x)g(y)\,dx\,dy \\& \quad < \frac{\Gamma^{n}(\frac{1}{\alpha })}{\alpha ^{n-1}\Gamma(\frac{n}{\alpha})}k_{\lambda}(r) \biggl[ \int_{\mathbf{R}_{+}^{n}} \|x\|_{\alpha}^{p(n-\frac {\lambda}{r})-n}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\& \qquad {}\times \biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha}^{q(n-\frac{\lambda}{s})-n}g^{q}(y) \,dy \biggr] ^{ \frac{1}{q}}, \end{aligned}$$
(110)
where the constant factor \(\frac{\Gamma^{n}(\frac{1}{\alpha})}{\alpha ^{n-1}\Gamma(\frac{n}{\alpha})}k_{\lambda}(r)\) is the best possible.
Also, the equivalent form of (110), the reverses, the Hardy-type inequalities, the operator expressions, and many particular examples are provided. Some other results of multi-dimensional Hilbert-type integral inequalities are discussed by [151, 152].
For \(n=2\) in (109), or \(\alpha=n=1\) in (110), we reduce the following Yang-Hilbert-type integral inequality:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(x,y)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(111)
where the constant factor \(k_{\lambda}(r)\) is the best possible. The equivalent form of (111) is obtained as follows (cf. [147], Theorem 2.2.1):
$$ \int_{0}^{\infty}y^{\frac{p\lambda}{s}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(x,y)f(x)\,dx \biggr) ^{p}\,dy< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx, $$
(112)
where the constant factor \(k_{\lambda}^{p}(r)\) is the best possible.
For \(\lambda=1\), \(r=q\), \(s=p\), (111) and (112) reduce, respectively, to (33) and (34). Hence, Yang-Hilbert-type integral inequalities are extensions of Hardy-Hilbert-type integral inequalities.
If we replace y and \(g(\frac{1}{y})\) to \(\frac{1}{y}\) and \(y^{2-\lambda }g(y)\) in (111) and (112), then we obtain the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors (cf. [153]):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(xy,1)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{r})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(113)
$$\begin{aligned}& \int_{0}^{\infty}y^{\frac{p\lambda}{r}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(xy,1)f(x)\,dx \biggr) ^{p}\,dz< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx. \end{aligned}$$
(114)
Replacing x and \(f(\frac{1}{x})\) to \(\frac{1}{x}\) and \(x^{2-\lambda}f(x)\) in (111) and (112), we also obtain the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(1,xy)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{s})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(115)
$$\begin{aligned}& \int_{0}^{\infty}y^{\frac{p\lambda}{s}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(1,xy)f(x)\,dx \biggr) ^{p}\,dy< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{s})-1}f^{p}(x) \,dx. \end{aligned}$$
(116)
It is evident that (111)-(116) are equivalent. In particular, if \(k_{\lambda}(x,y)\) is symmetric, then we have
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda }(xy,1)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r)\min_{a\in\{r,s\}} \biggl\{ \biggl[ \int _{0}^{\infty}x^{p(1-\frac {\lambda}{a})-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{a})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(117)
The above inequalities are some refinements of (33)-(36).

4.2 Discrete Yang-Hilbert-type inequalities

In 2011, Yang [148] (Theorem 4.2.3) gave an extension of (35) and (36) as follows.
If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda_{1},\lambda_{2}\in\mathbf {R}\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda}(x,y)\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\),
$$ k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\lambda _{1}-1} \, du\in \mathbf{R}_{+}, $$
\(k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{2}}}(k_{\lambda}(x,y)\frac {1}{y^{1-\lambda_{1}}})\) is decreasing with respect to \(x(y)>0\), \(a_{m},b_{n}\geq0\), \(0< \sum_{m=1}^{\infty}m^{p(1-\lambda _{1})-1}a_{m}^{p}<\infty\), \(0<\sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}b_{n}^{q}<\infty\), then we have the following equivalent discrete Yang-Hilbert-type inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}k_{\lambda}(m,n)a_{m}b_{n} \\& \quad < k(\lambda_{1}) \Biggl[ \sum_{m=1}^{\infty}m^{p(1-\lambda _{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(118)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \Biggl( \sum_{m=1}^{\infty }k_{\lambda }(m,n)a_{m} \Biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\sum _{m=1}^{\infty }m^{p(1-\lambda_{1})-1}a_{m}^{p}, \end{aligned}$$
(119)
where the constant factors \(k(\lambda_{1})\) and \((k(\lambda_{1}))^{p}\) are the best possible.
In this reference, some extensions of (118) and (119), the reverses, the operator expressions, and some particular examples are provided.
The following multiple inequalities are considered (cf. [148], Corollary 6.1.7).
If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(\lambda_{i}\in\mathbf{R}\) (\(i=1,2,\ldots,n\)), \(\sum_{i=1}^{n}\frac{1}{p_{i}}=1\), \(\sum_{i=1}^{n}\lambda _{i}=\lambda\), \(\frac{1}{q_{n}}=1-\frac{1}{p_{n}}\), \(k_{\lambda }(x_{1},\ldots ,x_{n})\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\), \(k_{\lambda}(x_{1},\ldots,x_{n})\frac{1}{x_{i}^{1-\lambda_{i}}}\) is decreasing with respect to \(x_{i}>0\) (\(i=1,\ldots ,n\)),
$$ k(\lambda_{1},\ldots,\lambda_{n-1}) = \int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda}(u_{1},\ldots ,u_{n-1},1)\prod_{j=1}^{n-1}u_{j}^{\lambda_{j}-1} \, du_{1}\cdots \, du_{n-1}\in \mathbf{R}_{+}, $$
\(a_{m_{i}}^{(i)}\geq0\) and \(0<\sum_{m_{i}=1}^{\infty }m_{i}^{p_{i}(1-\lambda_{i})-1}(a_{m_{i}}^{(i)})^{p_{i}}<\infty\) (\(i=1,2,\ldots,n\)), then we still have the following multiple equivalent inequalities:
$$\begin{aligned}& \sum_{m_{n}=1}^{\infty}\cdots\sum _{m_{1}=1}^{\infty}k_{\lambda }(m_{1}, \ldots,m_{n})\prod_{i=1}^{n}a_{m_{i}}^{(i)} \\& \quad < k(\lambda_{1},\ldots,\lambda_{n-1})\prod _{i=1}^{n} \Biggl[ \sum _{m_{i}=1}^{\infty}m_{i}^{p_{i}(1-\lambda _{i})-1} \bigl(a_{m_{i}}^{(i)}\bigr)^{p_{i}} \Biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(120)
$$\begin{aligned}& \sum_{m_{n}=1}^{\infty}m_{n}^{q_{n}\lambda_{n}-1} \Biggl[ \sum_{m_{n-1}=1}^{\infty}\cdots\sum _{m_{1}=1}^{\infty}k_{\lambda }(m_{1}, \ldots,m_{n})\prod_{i=1}^{n-1}a_{m_{i}}^{(i)} \Biggr] ^{q_{n}} \\& \quad < \bigl(k(\lambda_{1},\ldots,\lambda_{n-1}) \bigr)^{q_{n}}\prod_{i=1}^{n-1} \Biggl[ \sum_{m_{i}=1}^{\infty}m_{i}^{p_{i}(1-\lambda _{i})-1} \bigl(a_{m_{i}}^{(i)}\bigr)^{p_{i}} \Biggr] ^{\frac{q_{n}}{p_{i}}}, \end{aligned}$$
(121)
where the constant factors \(k(\lambda_{1},\ldots,\lambda_{n-1})\) and \((k(\lambda_{1},\ldots,\lambda_{n-1}))^{q_{n}}\) are the best possible.
In this book, the reverses of (120) and (121) are also considered. For \(n=2\), (120) and (121) reduce, respectively, to (120) and (121); for \(\lambda=1\), \(\lambda_{i}=1-\frac {1}{p_{i}}\) (\(i=1,\ldots,n\)), (120) reduces to (54).
In 2014, Yang [154] (Corollary 3.2) gave the following results.
Suppose that \(i_{0},j_{0}\in\mathbf{N}\), \(\alpha,\beta>0\), \(\lambda _{1}< i_{0}\), \(\lambda_{2}< j_{0}\), \(\lambda_{1}+\lambda=\lambda\), \(k_{\lambda }(x,y)\) (>0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\), which is decreasing with respect to \(x(y)>0\), there exists a constant \(0<\delta_{0}<j_{0}-\lambda_{2}\), such that for any \(\tilde{\lambda}_{1}\in(\lambda_{1}-\delta_{0},\lambda _{1}+\delta _{0})\), \(k(\tilde{\lambda}_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{ \tilde{\lambda}_{1}-1}\, du\in\mathbf{R}_{+}\), and there exists a constant \(\delta_{1}<\lambda_{1}-\delta_{0}\), satisfying \(k_{\lambda }(u,1)\leq\frac{L}{u^{\delta_{1}}}\) (\(u\in(0,\infty)\)). If \(p>1\), \(\frac {1}{p}+\frac{1}{q}=1\), \(a(m),b(n)\geq0\), \(0<\sum_{m\in\mathbf{N}^{i_{0}}}\|m\|_{\alpha}^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m)<\infty \), \(0<\sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}}b^{q}(n)<\infty\),
$$ K(\lambda_{1})= \biggl( \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{ \beta})} \biggr) k(\lambda_{1}), $$
then we have the following inequality:
$$\begin{aligned}& \sum_{n\in\mathbf{N}^{j_{0}}}\sum_{m\in\mathbf{N}^{i_{0}}}k_{\lambda } \bigl(\Vert m\Vert _{\alpha},\|n\|_{\beta}\bigr)a(m)b(n) \\& \quad < K(\lambda_{1}) \biggl[ \sum_{m\in\mathbf{N}^{i_{0}}} \|m\|_{\alpha }^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m) \biggr] ^{\frac{1}{p}} \biggl[ \sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}}b^{q}(n) \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(122)
$$\begin{aligned}& \sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{p\lambda _{2}-j_{0}} \biggl( \sum_{m\in\mathbf{N}^{i_{0}}}k_{\lambda}\bigl(\Vert m \Vert _{\alpha},\|n\|_{\beta }\bigr)a(m) \biggr) ^{p} \\& \quad < K^{p}(\lambda_{1})\sum _{m\in\mathbf{N}^{i_{0}}}\|m\|_{\alpha }^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m), \end{aligned}$$
(123)
where the constant factors \(K(\lambda_{1})\) and \(K^{p}(\lambda_{1})\) are the best possible.
For \(i_{0}=j_{0}=\alpha=\beta=1\), (122) and (123) also reduce, respectively, to (118) and (119). In this chapter, the reverses and the operator expressions of (122) and (123) are provided. A composition formula of the operators is developed.

4.3 Half-discrete Yang-Hilbert-type inequalities

In 2014, Yang and Debnath [155] (Theorem 6.1) gave the following results.
Suppose that \(m\in\mathbf{N}\), \(p_{i}>1\), \(\lambda_{i}\in\mathbf{R}\) (\(i=1,2,\ldots,m+1\)), \(\sum_{i=1}^{m+1}\frac{1}{p_{i}}=1\), \(\sum_{i=1}^{m+1}\lambda_{i}=\lambda\), \(\frac{1}{p}=1-\frac{1}{p_{m+1}}\), \(k_{\lambda }(x_{1},\ldots,x_{n})\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\), there exists a constant \(\delta_{0}>0\), such that for any \(\tilde{\lambda}_{i}\in(\lambda_{i}-\delta _{0},\lambda_{i}+\delta_{0})\), \(\sum_{i=1}^{m+1}\tilde{\lambda}_{i}=\lambda\), \(k_{\lambda}(x_{1},\ldots,x_{m},y)\frac {1}{y^{1-\tilde{\lambda}_{m+1}}}\) is strictly decreasing with respect to \(y>0\), and
$$ k(\tilde{\lambda}_{m+1})=\int_{0}^{\infty} \cdots\int_{0}^{\infty }k_{\lambda}(u_{1}, \ldots,u_{m},1)\prod_{j=1}^{m}u_{j}^{\tilde {\lambda }_{j}-1} \, du_{1}\cdots\, du_{m}\in\mathbf{R}_{+}. $$
If \(f_{i}(x_{i}),a_{n}\geq0\) and \(0<\sum_{n=1}^{\infty }n^{p_{m+1}(1-\lambda_{m+1})-1}a_{n}^{p_{m+1}}<\infty\),
$$ 0< \int_{0}^{\infty}t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt< \infty \quad (i=1,\ldots,m), $$
then we still have the following equivalent inequalities:
$$\begin{aligned}& \sum_{n=1}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k_{\lambda }(x_{1}, \ldots,x_{m},n)a_{n}\prod_{i=1}^{m}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{m} \\& \quad < k(\lambda_{m+1}) \Biggl[ \sum_{n=1}^{\infty}n^{p_{m+1}(1-\lambda _{m+1})-1}a_{n}^{p_{m+1}} \Biggr] ^{\frac{1}{p_{m+1}}}\prod_{i=1}^{m} \biggl[ \int_{0}^{\infty}t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(124)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{m+1}-1} \Biggl( \int_{0}^{\infty }\cdots \int_{0}^{\infty}k_{\lambda}(x_{1}, \ldots ,x_{m},n)\prod_{i=1}^{m}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{m} \Biggr) ^{p} \\& \quad < k^{p}(\lambda_{m+1})\prod _{i=1}^{m} \biggl[ \int_{0}^{\infty }t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{p}{p_{i}}}, \end{aligned}$$
(125)
where the constant factors
$$ k(\lambda_{m+1})=\int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda }(u_{1}, \ldots,u_{m},1)\prod_{j=1}^{m}u_{j}^{\lambda _{j}-1} \, du_{1}\cdots \, du_{m} $$
and \(k^{p}(\lambda_{m+1})\) are the best possible.
In this book, the reverses, the operator expressions, and some particular examples are provided. Some other kinds of multiple half-discrete Hilbert-type inequalities are discussed in [149, 150]. The composition formula of operators are given by [156].
In Corollary 5.3 of this book, Yang also gave the following multi-dimensional half-discrete inequalities.
Suppose that \(m,s\in\mathbf{N}\), \(\alpha,\beta>0\), \(\lambda_{1},\lambda _{2}\in\mathbf{R}\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda }(x,y)\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf {R}_{+}^{2}\), \(k_{\lambda}(x,y)\frac{1}{y^{s-\lambda_{2}}}\) is decreasing with respect to \(y>0\), and strictly decreasing in an interval \(I\subset (1,\infty )\), \(k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\lambda _{1}-1}\, du\in\mathbf{R}_{+}\),
$$ K(\lambda_{1})= \biggl( \frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac {\Gamma ^{s}(\frac{1}{\beta})}{\beta^{s-1}\Gamma(\frac{s}{\beta})} \biggr) k(\lambda_{1}). $$
If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),a(n)\geq0\), \(0<\int_{\mathbf {R}_{+}^{m}}\|x\|_{\alpha}^{p(m-\lambda_{1})-m}f^{p}(x)\,dx<\infty\), and \(0< \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{q(s-\lambda _{2})-s}a^{q}(n)<\infty\), then we have the following equivalent inequalities:
$$\begin{aligned}& \int_{\mathbf{R}_{+}^{m}}\sum_{n\in\mathbf{N}^{s}}k_{\lambda } \bigl(\Vert x\Vert _{\alpha},\|n\|_{\beta}\bigr)f(x)a(n)\,dx \\& \quad < K(\lambda_{1}) \biggl[ \int_{\mathbf{R}_{+}^{m}}\|x \|_{\alpha}^{p(m-\lambda _{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{q(s-\lambda_{2})-s}a^{q}(n) \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(126)
$$\begin{aligned}& \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{p\lambda_{2}-s} \biggl( \int_{\mathbf{R}_{+}^{m}}k_{\lambda}\bigl(\|x\|_{\alpha},\|n \|_{\beta }\bigr)f(x)\,dx \biggr) ^{p} \\& \quad < \bigl(K(\lambda_{1})\bigr)^{p}\int _{\mathbf{R}_{+}^{m}}\|x\|_{\alpha }^{p(m-\lambda_{1})-m}f^{p}(x) \,dx, \end{aligned}$$
(127)
$$\begin{aligned}& \int_{\mathbf{R}_{+}^{m}}\|x\|_{\alpha}^{q\lambda_{1}-m} \biggl( \sum _{n\in\mathbf{N}^{s}}k_{\lambda}\bigl(\|x\|_{\alpha},\|n \|_{\beta }\bigr)a(n) \biggr) ^{q}\,dx < \bigl(K(\lambda_{1})\bigr)^{q}\sum _{n\in\mathbf{N}^{s}}\|n\|_{\beta }^{q(s-\lambda_{2})-s}a^{q}(n), \end{aligned}$$
(128)
where the constant factors \(K(\lambda_{1})\), \((K(\lambda_{1}))^{p}\), and \((K(\lambda_{1}))^{q}\) are the best possible.
For \(m=s=\alpha=\beta=1\), (126), (127), and (128) reduce to the following equivalent half-discrete Yang-Hilbert-type inequalities with the best possible constant factors:
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty}k_{\lambda}(x,n)f(x)a_{n} \,dx \\& \quad < k(\lambda_{1}) \biggl[ \int_{0}^{\infty}x^{p(1-\lambda _{1})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(129)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \biggl( \int_{0}^{\infty }k_{\lambda }(x,n)f(x)\,dx \biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\int _{0}^{\infty }x^{p(1-\lambda_{1})-1}f^{p}(x)\,dx, \end{aligned}$$
(130)
$$\begin{aligned}& \int_{0}^{\infty}x^{q\lambda_{1}-1} \Biggl( \sum _{n=1}^{\infty }k_{\lambda }(x,n)a_{n} \Biggr) ^{q}\,dx< \bigl(k(\lambda_{1})\bigr)^{q} \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q}. \end{aligned}$$
(131)
Also, for \(m=1\), (124) and (125) reduce, respectively, to (129) and (130).
Replacing x to \(\frac{1}{x}\), \(x^{\lambda-2}f(\frac{1}{x})\) to \(f(x)\) in (129), (130), and (131), we have the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors:
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty}k_{\lambda}(1,xn)f(x)a_{n} \,dx \\& \quad < k(\lambda_{1}) \biggl[ \int_{0}^{\infty}x^{p(1-\lambda _{2})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(132)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \biggl( \int_{0}^{\infty }k_{\lambda }(1,xn)f(x)\,dx \biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\int _{0}^{\infty }x^{p(1-\lambda_{2})-1}f^{p}(x)\,dx, \end{aligned}$$
(133)
$$\begin{aligned}& \int_{0}^{\infty}x^{q\lambda_{2}-1} \Biggl( \sum _{n=1}^{\infty }k_{\lambda }(1,xn)a_{n} \Biggr) ^{q}\,dx< \bigl(k(\lambda_{1})\bigr)^{q} \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q}. \end{aligned}$$
(134)
The above half-discrete inequalities are some refinements of (37)-(40).

4.4 Some simple Hilbert-type inequalities

If the Hilbert-type inequality relates to a simple symmetric homogeneous kernel of degree −1 and the best constant factor is a more brief form, which does not relate to any conjugate exponents (such as (2)), then we call it simple Hilbert-type integral inequality. Its series analog (if it exists) is called a simple Hilbert-type inequality. If the simple homogeneous kernel is of −λ degree (\(\lambda>0\)) with a parameter λ and the inequality cannot be obtained by a simple transform to a simple Hilbert-type integral inequality, then we call it a simple Hilbert-type integral inequality with a parameter.
For example, we call the following integral inequality (i.e. (2)):
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \pi \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}, $$
(135)
and the following H-L-P inequalities (for \(p=2\) in (37) and (41)):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x,y\}}\,dx\,dy< 4 \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(136)
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)g(y)}{x-y}\,dx\,dy< \pi^{2} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(137)
simple Hilbert-type integral inequalities.
In 2006, Yang [21] gave the following simple Hilbert-type integral inequality:
$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{\max \{x,y\}}\,dx\,dy< 8 \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}. $$
(138)
In 2008, Yang [23] and [157] gave the following simple Hilbert-type integral inequalities:
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{x+y}\,dx\,dy< c_{0} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(139)
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\arctan\sqrt{\frac {x}{y}}}{x+y}f(x)g(y)\,dx\,dy< \frac{\pi^{2}}{4} \biggl( \int _{0}^{\infty }f^{2}(x)\,dx\int _{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(140)
where \(c_{0}=8\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{2}}=7.3277^{+}\).
In 2005, Yang [158, 159] gave a simple Hilbert-type integral inequality with a parameter \(\lambda\in(0,1)\):
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{|x-y|^{\lambda}}\,dx\,dy \\& \quad < 2B\biggl(1-\lambda,\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda }f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}. \end{aligned}$$
(141)
As in (16),
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda}f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}} \end{aligned}$$
(142)
is called a simple Hilbert-type integral inequality with the parameter \(\lambda\in(0,\infty)\).
Also we find the following simple Hilbert-type inequality:
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \pi \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(143)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\max\{m,n\}}< 4 \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(144)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}b_{n}}{m-n}< \pi^{2} \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. \end{aligned}$$
(145)
In (47), for \(p=q=2\), we have
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{\max\{m,n\}}< 8 \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(146)
In 2010, Xin and Yang [24] gave
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{m+n}< c_{0} \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(147)
where \(c_{0}=8\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{2}}=7.3277^{+}\). Inequalities (143) and (144) are new simple Hilbert-type inequalities. We still have a simple Hilbert-type inequality with a parameter \(\lambda\in(0,4]\) as follows (cf. [51]):
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}< B\biggl( \frac{\lambda}{2},\frac{\lambda}{2}\biggr) \Biggl( \sum _{m=1}^{\infty }m^{1-\lambda}a_{m}^{2} \sum_{n=1}^{\infty}n^{1-\lambda }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(148)
Some simple half-discrete Hilbert-type inequalities are also listed as follows:
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}}{x+n}f(x)\,dx< \pi \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty}a_{n}^{2} \Biggr) ^{\frac {1}{2}}, \end{aligned}$$
(149)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}}{\max\{x,n\}}f(x)\,dx< 4 \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(150)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{\ln(\frac{x}{n})a_{n}}{x-n} f(x)\,dx< \pi^{2} \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(151)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{|\ln(\frac {x}{n})|a_{n}}{\max \{x,n\}}f(x)\,dx< 8 \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(152)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{|\ln(\frac {x}{n})|a_{n}}{x+n}f(x)\,dx< c_{0} \Biggl( \int _{0}^{\infty}f^{2}(x)\,dx\sum _{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}. \end{aligned}$$
(153)

Acknowledgements

The authors wish to express their thanks to the referees for their careful reading of the manuscript and for their valuable suggestions. This work is supported by the National Natural Science Foundation (No. 61370186), and the Science and Technology Planning Project of Guangzhou (No. 2014J4100032, No. 201510010203). We are grateful for their help.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Weyl, H: Singulare integral Gleichungen mit besonderer Berücksichtigung des Fourierschen integral theorems. Inaugeral-Dissertation, Gottingen (1908) Weyl, H: Singulare integral Gleichungen mit besonderer Berücksichtigung des Fourierschen integral theorems. Inaugeral-Dissertation, Gottingen (1908)
2.
Zurück zum Zitat Schur, I: Bemerkungen für Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Math. 140, 1-28 (1911) MATHMathSciNet Schur, I: Bemerkungen für Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Math. 140, 1-28 (1911) MATHMathSciNet
3.
Zurück zum Zitat Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934) Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
4.
Zurück zum Zitat Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) MATHCrossRef
5.
Zurück zum Zitat Kuang, J: Applied Inequalities. Shandong Science Technic Press, Jinan (2004) Kuang, J: Applied Inequalities. Shandong Science Technic Press, Jinan (2004)
6.
Zurück zum Zitat Hu, K: Some Problems in Analysis Inequalities. Wuhan University Press, Wuhan (2007) Hu, K: Some Problems in Analysis Inequalities. Wuhan University Press, Wuhan (2007)
7.
8.
Zurück zum Zitat Carleman, T: Sur les Équations Integrals Singulières a Noyau Reel et Symetrique. Almqvist & Wiksell, Uppsala (1923) Carleman, T: Sur les Équations Integrals Singulières a Noyau Reel et Symetrique. Almqvist & Wiksell, Uppsala (1923)
10.
Zurück zum Zitat Yang, B: On a new Hardy-Hilbert’s type inequality. Math. Inequal. Appl. 7(3), 355-363 (2004) MATHMathSciNet Yang, B: On a new Hardy-Hilbert’s type inequality. Math. Inequal. Appl. 7(3), 355-363 (2004) MATHMathSciNet
11.
Zurück zum Zitat Yang, B: A more accurate Hardy-Hilbert’s type inequality. J. Xinyang Norm. Univ. 18(2), 140-142 (2005) Yang, B: A more accurate Hardy-Hilbert’s type inequality. J. Xinyang Norm. Univ. 18(2), 140-142 (2005)
12.
Zurück zum Zitat Yang, B: A more accurate Hilbert-type inequality. Coll. Math. 21(5), 99-102 (2005) Yang, B: A more accurate Hilbert-type inequality. Coll. Math. 21(5), 99-102 (2005)
13.
Zurück zum Zitat Yang, B: On a more accurate Hardy-Hilbert’s type inequality and its applications. Acta Math. Sin. 49(3), 363-368 (2006) MATH Yang, B: On a more accurate Hardy-Hilbert’s type inequality and its applications. Acta Math. Sin. 49(3), 363-368 (2006) MATH
14.
Zurück zum Zitat Yang, B: A more accurate Hilbert type inequality. J. Math. 27(6), 673-678 (2007) MathSciNet Yang, B: A more accurate Hilbert type inequality. J. Math. 27(6), 673-678 (2007) MathSciNet
15.
Zurück zum Zitat Yang, B: On an extension of Hardy-Hilbert’s type inequality and a reverse. Acta Math. Sin. Chin. Ser. 50(4), 861-868 (2007) MATH Yang, B: On an extension of Hardy-Hilbert’s type inequality and a reverse. Acta Math. Sin. Chin. Ser. 50(4), 861-868 (2007) MATH
16.
Zurück zum Zitat Yang, B: On a more accurate Hilbert’s type inequality. Int. Math. Forum 2(37), 1831-1837 (2007) MATHMathSciNet Yang, B: On a more accurate Hilbert’s type inequality. Int. Math. Forum 2(37), 1831-1837 (2007) MATHMathSciNet
17.
Zurück zum Zitat Zhong, J, Yang, B: On an extension of a more accurate Hilbert-type inequality. J. Zhejiang Univ. Sci. Ed. 35(2), 121-124 (2008) MATHMathSciNet Zhong, J, Yang, B: On an extension of a more accurate Hilbert-type inequality. J. Zhejiang Univ. Sci. Ed. 35(2), 121-124 (2008) MATHMathSciNet
18.
Zurück zum Zitat Hardy, GH: Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 23, 45-46 (1925) Hardy, GH: Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 23, 45-46 (1925)
19.
Zurück zum Zitat Levin, V: Two remarks on Hilbert’s double series theorem. J. Indian Math. Soc. 11, 111-115 (1937) Levin, V: Two remarks on Hilbert’s double series theorem. J. Indian Math. Soc. 11, 111-115 (1937)
21.
Zurück zum Zitat Yang, B: On a basic Hilbert-type inequality. J. Guangdong Educ. Inst. 26(3), 1-5 (2006) MATH Yang, B: On a basic Hilbert-type inequality. J. Guangdong Educ. Inst. 26(3), 1-5 (2006) MATH
22.
Zurück zum Zitat Yang, B: A Hilbert-type inequality with two pairs of conjugate exponents. J. Jilin Univ. Sci. Ed. 45(4), 524-528 (2007) MATH Yang, B: A Hilbert-type inequality with two pairs of conjugate exponents. J. Jilin Univ. Sci. Ed. 45(4), 524-528 (2007) MATH
23.
Zurück zum Zitat Yang, B: On a basic Hilbert-type integral inequality and extensions. Coll. Math. 24(1), 87-91 (2008) Yang, B: On a basic Hilbert-type integral inequality and extensions. Coll. Math. 24(1), 87-91 (2008)
24.
Zurück zum Zitat Xin, D, Yang, B: A basic Hilbert-type inequality. J. Math. 30(3), 554-560 (2010) MathSciNet Xin, D, Yang, B: A basic Hilbert-type inequality. J. Math. 30(3), 554-560 (2010) MathSciNet
25.
Zurück zum Zitat Hu, K: A few important inequalities. J. Jianxi Teach. Coll. Nat. Sci. 3(1), 1-4 (1979) Hu, K: A few important inequalities. J. Jianxi Teach. Coll. Nat. Sci. 3(1), 1-4 (1979)
26.
28.
Zurück zum Zitat Lu, Z: Some new inverse type Hilbert-Pachpatte inequalities. Tamkang J. Math. 34(2), 155-161 (2003) MathSciNet Lu, Z: Some new inverse type Hilbert-Pachpatte inequalities. Tamkang J. Math. 34(2), 155-161 (2003) MathSciNet
29.
Zurück zum Zitat He, B, Li, Y: On several new inequalities close to Hilbert-Pachpatte’s inequality. J. Inequal. Pure Appl. Math. 7(4), Article 154 (2006) MathSciNet He, B, Li, Y: On several new inequalities close to Hilbert-Pachpatte’s inequality. J. Inequal. Pure Appl. Math. 7(4), Article 154 (2006) MathSciNet
30.
Zurück zum Zitat Pachpatte, BG: Mathematical Inequalities. Elsevier, Amsterdam (2005) MATH Pachpatte, BG: Mathematical Inequalities. Elsevier, Amsterdam (2005) MATH
33.
Zurück zum Zitat Kuang, J: New progress in inequality study in China. J. Beijing Union Univ. Nat. Sci. 19(1), 29-37 (2005) Kuang, J: New progress in inequality study in China. J. Beijing Union Univ. Nat. Sci. 19(1), 29-37 (2005)
34.
Zurück zum Zitat Gao, M: On the Hilbert inequality. J. Anal. Appl. 18(4), 1117-1122 (1999) MATH Gao, M: On the Hilbert inequality. J. Anal. Appl. 18(4), 1117-1122 (1999) MATH
35.
Zurück zum Zitat Gao, M, Hsu, L: A survey of various refinements and generalizations of Hilbert’s inequalities. J. Math. Res. Expo. 25(2), 227-243 (2005) MATHMathSciNet Gao, M, Hsu, L: A survey of various refinements and generalizations of Hilbert’s inequalities. J. Math. Res. Expo. 25(2), 227-243 (2005) MATHMathSciNet
37.
Zurück zum Zitat Hsu, L, Wang, Y: A refinement of Hilbert’s double series theorem. J. Math. Res. Expo. 11(1), 143-144 (1991) MATHMathSciNet Hsu, L, Wang, Y: A refinement of Hilbert’s double series theorem. J. Math. Res. Expo. 11(1), 143-144 (1991) MATHMathSciNet
38.
Zurück zum Zitat Gao, M: A note on Hilbert double series theorem. Hunan Ann. Math. 12(1-2), 143-147 (1992) Gao, M: A note on Hilbert double series theorem. Hunan Ann. Math. 12(1-2), 143-147 (1992)
39.
Zurück zum Zitat Xu, L, Guo, Y: Note on Hardy-Riesz’s extension of Hilbert’s inequality. Chin. Q. J. Math. 6(1), 75-77 (1991) Xu, L, Guo, Y: Note on Hardy-Riesz’s extension of Hilbert’s inequality. Chin. Q. J. Math. 6(1), 75-77 (1991)
40.
Zurück zum Zitat Yang, B, Gao, M: On a best value of Hardy-Hilbert’s inequality. Adv. Math. 26(2), 159-164 (1997) MATHMathSciNet Yang, B, Gao, M: On a best value of Hardy-Hilbert’s inequality. Adv. Math. 26(2), 159-164 (1997) MATHMathSciNet
42.
43.
Zurück zum Zitat Yang, B: A refinement of Hilbert’s inequality. Huanghuai J. 13(2), 47-51 (1997) Yang, B: A refinement of Hilbert’s inequality. Huanghuai J. 13(2), 47-51 (1997)
44.
Zurück zum Zitat Yang, B: On a strengthened version of the more accurate Hardy-Hilbert’s inequality. Acta Math. Sin. 42(6), 1103-1110 (1999) MATH Yang, B: On a strengthened version of the more accurate Hardy-Hilbert’s inequality. Acta Math. Sin. 42(6), 1103-1110 (1999) MATH
45.
Zurück zum Zitat Yang, B, Debnath, L: A strengthened Hardy-Hilbert’s inequality. Proc. Jangjeon Math. Soc. 6(2), 119-124 (2003) MATHMathSciNet Yang, B, Debnath, L: A strengthened Hardy-Hilbert’s inequality. Proc. Jangjeon Math. Soc. 6(2), 119-124 (2003) MATHMathSciNet
46.
Zurück zum Zitat Yang, B: A note on Hilbert’s integral inequalities. Chin. Q. J. Math. 13(4), 83-86 (1998) MATH Yang, B: A note on Hilbert’s integral inequalities. Chin. Q. J. Math. 13(4), 83-86 (1998) MATH
47.
Zurück zum Zitat Wang, Z, Guo, D: Introduction to Special Functions. Science Press, Beijing (1979) Wang, Z, Guo, D: Introduction to Special Functions. Science Press, Beijing (1979)
48.
Zurück zum Zitat Yang, B: A general Hardy-Hilbert’s integral inequality with a best value. Chin. Ann. Math., Ser. A 21(4), 401-408 (2000) MATH Yang, B: A general Hardy-Hilbert’s integral inequality with a best value. Chin. Ann. Math., Ser. A 21(4), 401-408 (2000) MATH
50.
51.
Zurück zum Zitat Yang, B: On a generalization of Hilbert’s double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145-151 (2001) MATH Yang, B: On a generalization of Hilbert’s double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145-151 (2001) MATH
52.
Zurück zum Zitat Yang, B: On a general Hardy-Hilbert’s inequality. Chin. Ann. Math., Ser. A 23(2), 247-254 (2002) MATH Yang, B: On a general Hardy-Hilbert’s inequality. Chin. Ann. Math., Ser. A 23(2), 247-254 (2002) MATH
53.
Zurück zum Zitat Yang, B: A dual Hardy-Hilbert’s inequality and generalizations. Adv. Math. 35(1), 102-108 (2006) MathSciNet Yang, B: A dual Hardy-Hilbert’s inequality and generalizations. Adv. Math. 35(1), 102-108 (2006) MathSciNet
54.
Zurück zum Zitat Yang, B: On new extensions of Hilbert’s inequality. Acta Math. Hung. 104(4), 291-299 (2004) MATHCrossRef Yang, B: On new extensions of Hilbert’s inequality. Acta Math. Hung. 104(4), 291-299 (2004) MATHCrossRef
55.
Zurück zum Zitat Yang, B: On a new inequality similar to Hardy-Hilbert’s inequality. Math. Inequal. Appl. 6(1), 37-44 (2003) MATHMathSciNet Yang, B: On a new inequality similar to Hardy-Hilbert’s inequality. Math. Inequal. Appl. 6(1), 37-44 (2003) MATHMathSciNet
56.
Zurück zum Zitat Yang, B: Best generalization of Hilbert’s type of inequality. J. Jilin Univ. Sci. Ed. 42(1), 30-34 (2004) MATH Yang, B: Best generalization of Hilbert’s type of inequality. J. Jilin Univ. Sci. Ed. 42(1), 30-34 (2004) MATH
57.
Zurück zum Zitat Yang, B: On a generalization of the Hilbert’s type inequality and its applications. Chin. J. Eng. Math. 21(5), 821-824 (2004) MATH Yang, B: On a generalization of the Hilbert’s type inequality and its applications. Chin. J. Eng. Math. 21(5), 821-824 (2004) MATH
58.
Zurück zum Zitat Yang, B: Generalization of the Hilbert’s type inequality with best constant factor and its applications. J. Math. Res. Expo. 25(2), 341-346 (2005) MATH Yang, B: Generalization of the Hilbert’s type inequality with best constant factor and its applications. J. Math. Res. Expo. 25(2), 341-346 (2005) MATH
59.
60.
Zurück zum Zitat Yang, B: A new Hilbert-type inequality. Bull. Belg. Math. Soc. Simon Stevin 13, 479-487 (2006) MATHMathSciNet Yang, B: A new Hilbert-type inequality. Bull. Belg. Math. Soc. Simon Stevin 13, 479-487 (2006) MATHMathSciNet
61.
Zurück zum Zitat Wang, W, Yang, B: A strengthened Hardy-Hilbert’s type inequality. Aust. J. Math. Anal. Appl. 3(2), Article 17 (2006) MathSciNetCrossRef Wang, W, Yang, B: A strengthened Hardy-Hilbert’s type inequality. Aust. J. Math. Anal. Appl. 3(2), Article 17 (2006) MathSciNetCrossRef
62.
Zurück zum Zitat Hong, Y: All-side generalization about Hardy-Hilbert integral inequalities. Acta Math. Sin. 44(4), 619-626 (2001) MATH Hong, Y: All-side generalization about Hardy-Hilbert integral inequalities. Acta Math. Sin. 44(4), 619-626 (2001) MATH
63.
Zurück zum Zitat He, L, Yu, J, Gao, M: An extension of Hilbert’s integral inequality. J. Shaoguan Univ. Nat. Sci. 23(3), 25-30 (2002) He, L, Yu, J, Gao, M: An extension of Hilbert’s integral inequality. J. Shaoguan Univ. Nat. Sci. 23(3), 25-30 (2002)
64.
Zurück zum Zitat Yang, B: On a multiple Hardy-Hilbert’s integral inequality. Chin. Ann. Math., Ser. A 24(6), 743-750 (2003) MATH Yang, B: On a multiple Hardy-Hilbert’s integral inequality. Chin. Ann. Math., Ser. A 24(6), 743-750 (2003) MATH
65.
Zurück zum Zitat Yang, B, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet Yang, B, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MATHMathSciNet
66.
Zurück zum Zitat Yang, B: On the way of weight function and research for Hilbert’s type integral inequalities. J. Guangdong Educ. Inst. 25(3), 1-6 (2005) Yang, B: On the way of weight function and research for Hilbert’s type integral inequalities. J. Guangdong Educ. Inst. 25(3), 1-6 (2005)
67.
Zurück zum Zitat Sulaiman, W: On Hardy-Hilbert’s integral inequality. J. Inequal. Pure Appl. Math. 5(2), Article 25 (2004) MathSciNet Sulaiman, W: On Hardy-Hilbert’s integral inequality. J. Inequal. Pure Appl. Math. 5(2), Article 25 (2004) MathSciNet
68.
Zurück zum Zitat Brnetic, I, Pecaric, J: Generalization of Hilbert’s integral inequality. Math. Inequal. Appl. 7(2), 199-205 (2004) MATHMathSciNet Brnetic, I, Pecaric, J: Generalization of Hilbert’s integral inequality. Math. Inequal. Appl. 7(2), 199-205 (2004) MATHMathSciNet
69.
Zurück zum Zitat Krnić, M, Gao, M, Pečarić, J, Gao, X: On the best constant in Hilbert’s inequality. Math. Inequal. Appl. 8(2), 317-329 (2005) MATHMathSciNet Krnić, M, Gao, M, Pečarić, J, Gao, X: On the best constant in Hilbert’s inequality. Math. Inequal. Appl. 8(2), 317-329 (2005) MATHMathSciNet
70.
Zurück zum Zitat Brnet, I, Krnić, M, Pečarić, J: Multiple Hilbert and Hardy-Hilbert inequalities with non-conjugate parameters. Bull. Aust. Math. Soc. 71, 447-457 (2005) CrossRef Brnet, I, Krnić, M, Pečarić, J: Multiple Hilbert and Hardy-Hilbert inequalities with non-conjugate parameters. Bull. Aust. Math. Soc. 71, 447-457 (2005) CrossRef
71.
Zurück zum Zitat Krnić, M, Pečarić, J: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29-51 (2005) MathSciNet Krnić, M, Pečarić, J: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29-51 (2005) MathSciNet
72.
Zurück zum Zitat Sulaiman, W: New ideas on Hardy-Hilbert’s integral inequality (I). Panam. Math. J. 15(2), 95-100 (2005) MATHMathSciNet Sulaiman, W: New ideas on Hardy-Hilbert’s integral inequality (I). Panam. Math. J. 15(2), 95-100 (2005) MATHMathSciNet
73.
74.
Zurück zum Zitat Laith, EA: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008) Laith, EA: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008)
75.
Zurück zum Zitat Jia, W, Gao, M, Debnath, L: Some new improvement of the Hardy-Hilbert inequality with applications. Int. J. Pure Appl. Math. 11(1), 21-28 (2004) MATHMathSciNet Jia, W, Gao, M, Debnath, L: Some new improvement of the Hardy-Hilbert inequality with applications. Int. J. Pure Appl. Math. 11(1), 21-28 (2004) MATHMathSciNet
76.
Zurück zum Zitat Lu, Z: On new generalizations of Hilbert’s inequalities. Tamkang J. Math. 35(1), 77-86 (2004) MathSciNet Lu, Z: On new generalizations of Hilbert’s inequalities. Tamkang J. Math. 35(1), 77-86 (2004) MathSciNet
77.
Zurück zum Zitat Xie, H, Lu, Z: Discrete Hardy-Hilbert’s inequalities in \(\mathbf{R}^{n}\). Northeast. Math. J. 21(1), 87-94 (2005) MATHMathSciNet Xie, H, Lu, Z: Discrete Hardy-Hilbert’s inequalities in \(\mathbf{R}^{n}\). Northeast. Math. J. 21(1), 87-94 (2005) MATHMathSciNet
78.
Zurück zum Zitat Gao, M: A new Hardy-Hilbert’s type inequality for double series and its applications. Aust. J. Math. Anal. Appl. 3(1), Article 13 (2005) Gao, M: A new Hardy-Hilbert’s type inequality for double series and its applications. Aust. J. Math. Anal. Appl. 3(1), Article 13 (2005)
79.
Zurück zum Zitat He, L, Gao, M, Jia, W: On a new strengthened Hardy-Hilbert’s inequality. J. Math. Res. Expo. 26(2), 276-282 (2006) MATHMathSciNet He, L, Gao, M, Jia, W: On a new strengthened Hardy-Hilbert’s inequality. J. Math. Res. Expo. 26(2), 276-282 (2006) MATHMathSciNet
80.
Zurück zum Zitat He, L, Jia, W, Gao, M: A Hardy-Hilbert’s type inequality with gamma function and its applications. Integral Transforms Spec. Funct. 17(5), 355-363 (2006) MATHMathSciNetCrossRef He, L, Jia, W, Gao, M: A Hardy-Hilbert’s type inequality with gamma function and its applications. Integral Transforms Spec. Funct. 17(5), 355-363 (2006) MATHMathSciNetCrossRef
81.
Zurück zum Zitat Jia, W, Gao, M, Gao, X: On an extension of the Hardy-Hilbert theorem. Studia Sci. Math. Hung. 42(1), 21-35 (2005) MATHMathSciNet Jia, W, Gao, M, Gao, X: On an extension of the Hardy-Hilbert theorem. Studia Sci. Math. Hung. 42(1), 21-35 (2005) MATHMathSciNet
82.
Zurück zum Zitat Gao, M, Jia, W, Gao, X: On an improvement of Hardy-Hilbert’s inequality. J. Math. 26(6), 647-651 (2006) MATHMathSciNet Gao, M, Jia, W, Gao, X: On an improvement of Hardy-Hilbert’s inequality. J. Math. 26(6), 647-651 (2006) MATHMathSciNet
83.
Zurück zum Zitat Sun, B: Best generalization of a Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 113 (2006) MathSciNet Sun, B: Best generalization of a Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 113 (2006) MathSciNet
84.
Zurück zum Zitat Wang, W, Xin, D: On a new strengthened version of a Hardy-Hilbert type inequality and applications. J. Inequal. Pure Appl. Math. 7(5), Article 180 (2006) MathSciNet Wang, W, Xin, D: On a new strengthened version of a Hardy-Hilbert type inequality and applications. J. Inequal. Pure Appl. Math. 7(5), Article 180 (2006) MathSciNet
85.
Zurück zum Zitat Xu, J: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 189-198 (2007) MathSciNet Xu, J: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 189-198 (2007) MathSciNet
86.
Zurück zum Zitat Chen, Z, Xu, J: New extensions of Hilbert’s inequality with multiple parameters. Acta Math. Hung. 117(4), 383-400 (2007) MATHCrossRef Chen, Z, Xu, J: New extensions of Hilbert’s inequality with multiple parameters. Acta Math. Hung. 117(4), 383-400 (2007) MATHCrossRef
87.
Zurück zum Zitat Yang, B: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 1(1), Article 11 (2004) MathSciNet Yang, B: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 1(1), Article 11 (2004) MathSciNet
88.
Zurück zum Zitat Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005) MATHMathSciNet
89.
Zurück zum Zitat Hong, Y: On multiple Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Appl. 2006, Article ID 94960 (2006) Hong, Y: On multiple Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Appl. 2006, Article ID 94960 (2006)
90.
Zurück zum Zitat Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), Article 92 (2005) MathSciNet Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), Article 92 (2005) MathSciNet
91.
Zurück zum Zitat Zhong, W, Yang, B: On a multiple Hilbert-type integral inequality with the symmetric kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007) MathSciNetCrossRef Zhong, W, Yang, B: On a multiple Hilbert-type integral inequality with the symmetric kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007) MathSciNetCrossRef
92.
Zurück zum Zitat Yang, B, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet Yang, B, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNet
93.
Zurück zum Zitat Krnić, M, Pečarić, J, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet Krnić, M, Pečarić, J, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008) MATHMathSciNet
94.
95.
Zurück zum Zitat Rassias, MT, Yang, B: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef Rassias, MT, Yang, B: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014) MathSciNetCrossRef
96.
Zurück zum Zitat Yang, B: On best extensions of Hardy-Hilbert’s inequality with two parameters. J. Inequal. Pure Appl. Math. 6(3), Article 81 (2005) MathSciNet Yang, B: On best extensions of Hardy-Hilbert’s inequality with two parameters. J. Inequal. Pure Appl. Math. 6(3), Article 81 (2005) MathSciNet
97.
Zurück zum Zitat Das, N, Sahoo, S: A generalization of Hardy-Hilbert’s inequality for non-homogeneous kernel. Bul. Acad. Ştiinţe Repub. Mold. Mat. 67(3), 29-44 (2011) MathSciNet Das, N, Sahoo, S: A generalization of Hardy-Hilbert’s inequality for non-homogeneous kernel. Bul. Acad. Ştiinţe Repub. Mold. Mat. 67(3), 29-44 (2011) MathSciNet
98.
Zurück zum Zitat Krnić, M, Pečarić, J, Vuković, P: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60(1-2), 161-171 (2011) MATHMathSciNetCrossRef Krnić, M, Pečarić, J, Vuković, P: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60(1-2), 161-171 (2011) MATHMathSciNetCrossRef
99.
Zurück zum Zitat Adiyasuren, V, Batbold, T: On a relation between the Hardy-Hilbert and Gabriel inequalities. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014) Adiyasuren, V, Batbold, T: On a relation between the Hardy-Hilbert and Gabriel inequalities. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014)
100.
Zurück zum Zitat Yang, B: A reverse of the Hardy-Hilbert’s type inequality. J. Southwest China Norm. Univ. Nat. Sci. 30(6), 1012-1015 (2005) Yang, B: A reverse of the Hardy-Hilbert’s type inequality. J. Southwest China Norm. Univ. Nat. Sci. 30(6), 1012-1015 (2005)
101.
Zurück zum Zitat Yang, B: A reverse Hardy-Hilbert’s integral inequality. J. Jilin Univ. Sci. Ed. 42(4), 489-493 (2004) MATH Yang, B: A reverse Hardy-Hilbert’s integral inequality. J. Jilin Univ. Sci. Ed. 42(4), 489-493 (2004) MATH
102.
Zurück zum Zitat Yang, B: On a reverse of Hardy-Hilbert’s integral inequality. Pure Appl. Math. 22(3), 312-317 (2006) MATHMathSciNet Yang, B: On a reverse of Hardy-Hilbert’s integral inequality. Pure Appl. Math. 22(3), 312-317 (2006) MATHMathSciNet
103.
Zurück zum Zitat Yang, B: On an extended Hardy-Hilbert’s inequality and some reversed form. Int. Math. Forum 1(39), 1905-1912 (2006) MATHMathSciNet Yang, B: On an extended Hardy-Hilbert’s inequality and some reversed form. Int. Math. Forum 1(39), 1905-1912 (2006) MATHMathSciNet
104.
Zurück zum Zitat Yang, B: A reverse of the Hardy-Hilbert’s inequality. Math. Pract. Theory 36(11), 207-212 (2006) Yang, B: A reverse of the Hardy-Hilbert’s inequality. Math. Pract. Theory 36(11), 207-212 (2006)
105.
Zurück zum Zitat Yang, B: On a reverse of a Hardy-Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 115 (2006) MathSciNet Yang, B: On a reverse of a Hardy-Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 115 (2006) MathSciNet
106.
Zurück zum Zitat Xi, G: A reverse Hardy-Hilbert-type inequality. J. Inequal. Appl. 2007, Article ID 79758 (2007) CrossRef Xi, G: A reverse Hardy-Hilbert-type inequality. J. Inequal. Appl. 2007, Article ID 79758 (2007) CrossRef
107.
Zurück zum Zitat Yang, B: On a relation to Hardy-Hilbert’s inequality and Mulholland’s inequality. Acta Math. Sin. 49(3), 559-566 (2006) MATH Yang, B: On a relation to Hardy-Hilbert’s inequality and Mulholland’s inequality. Acta Math. Sin. 49(3), 559-566 (2006) MATH
108.
Zurück zum Zitat Xin, D: Best generalization of Hardy-Hilbert’s inequality with multi-parameters. J. Inequal. Pure Appl. Math. 7(4), Article 153 (2006) MathSciNet Xin, D: Best generalization of Hardy-Hilbert’s inequality with multi-parameters. J. Inequal. Pure Appl. Math. 7(4), Article 153 (2006) MathSciNet
109.
Zurück zum Zitat Zhong, W, Yang, B: A best extension of Hilbert inequality involving several parameters. J. Jinan Univ. Nat. Sci. 28(1), 20-23 (2007) Zhong, W, Yang, B: A best extension of Hilbert inequality involving several parameters. J. Jinan Univ. Nat. Sci. 28(1), 20-23 (2007)
110.
Zurück zum Zitat Zhong, W, Yang, B: A reverse Hilbert’s type integral inequality with some parameters and the equivalent forms. Pure Appl. Math. 24(2), 401-407 (2008) MathSciNet Zhong, W, Yang, B: A reverse Hilbert’s type integral inequality with some parameters and the equivalent forms. Pure Appl. Math. 24(2), 401-407 (2008) MathSciNet
111.
112.
Zurück zum Zitat Yang, B: A bilinear inequality with a homogeneous kernel of −2-order. J. Xiamen Univ. Nat. Sci. 45(6), 752-755 (2006) MATH Yang, B: A bilinear inequality with a homogeneous kernel of −2-order. J. Xiamen Univ. Nat. Sci. 45(6), 752-755 (2006) MATH
113.
Zurück zum Zitat Yang, B: A Hilbert-type integral inequality with the kernel of −3-order homogeneous. J. Yunnam Univ. 30(4), 325-330 (2008) Yang, B: A Hilbert-type integral inequality with the kernel of −3-order homogeneous. J. Yunnam Univ. 30(4), 325-330 (2008)
114.
Zurück zum Zitat Xie, Z: A new Hilbert-type inequality with the kernel of 3-homogeneous. J. Jilin Univ. Sci. Ed. 45(3), 369-373 (2007) MATH Xie, Z: A new Hilbert-type inequality with the kernel of 3-homogeneous. J. Jilin Univ. Sci. Ed. 45(3), 369-373 (2007) MATH
115.
Zurück zum Zitat Xie, Z, Zheng, Z: A Hilbert-type inequality with parameters. J. Xiangtan Univ. Nat. Sci. 29(3), 24-28 (2007) MATH Xie, Z, Zheng, Z: A Hilbert-type inequality with parameters. J. Xiangtan Univ. Nat. Sci. 29(3), 24-28 (2007) MATH
116.
Zurück zum Zitat Xie, Z, Zheng, Z: A Hilbert-type integral inequality whose kernel is a homogeneous form of degree −3. J. Math. Anal. Appl. 339, 324-331 (2007) MathSciNetCrossRef Xie, Z, Zheng, Z: A Hilbert-type integral inequality whose kernel is a homogeneous form of degree −3. J. Math. Anal. Appl. 339, 324-331 (2007) MathSciNetCrossRef
117.
Zurück zum Zitat Xie, Z, Zheng, Z: A new Hilbert-type integral inequality and its reverse. Soochow J. Math. 33(4), 751-759 (2007) MATHMathSciNet Xie, Z, Zheng, Z: A new Hilbert-type integral inequality and its reverse. Soochow J. Math. 33(4), 751-759 (2007) MATHMathSciNet
118.
Zurück zum Zitat Li, Y, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76, 1-13 (2007) MATHCrossRef Li, Y, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76, 1-13 (2007) MATHCrossRef
119.
Zurück zum Zitat He, B, Qian, Y, Li, Y: On analogues of the Hilbert’s inequality. Commun. Math. Anal. 4(2), 47-53 (2008) MATHMathSciNet He, B, Qian, Y, Li, Y: On analogues of the Hilbert’s inequality. Commun. Math. Anal. 4(2), 47-53 (2008) MATHMathSciNet
120.
Zurück zum Zitat Yang, B: On a Hilbert-type inequality with the homogeneous kernel of −3-order. J. Guangdong Educ. Inst. 27(5), 1-5 (2007) Yang, B: On a Hilbert-type inequality with the homogeneous kernel of −3-order. J. Guangdong Educ. Inst. 27(5), 1-5 (2007)
121.
Zurück zum Zitat Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005) MATHMathSciNet Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005) MATHMathSciNet
122.
Zurück zum Zitat Yang, B: A half-discrete Hilbert’s inequality. J. Guangdong Univ. Educ. 31(3), 1-7 (2011) Yang, B: A half-discrete Hilbert’s inequality. J. Guangdong Univ. Educ. 31(3), 1-7 (2011)
123.
Zurück zum Zitat Zhong, W: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 31(5), 18-22 (2011) MATH Zhong, W: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 31(5), 18-22 (2011) MATH
124.
125.
Zurück zum Zitat Yang, B, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011) CrossRef Yang, B, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011) CrossRef
126.
Zurück zum Zitat Yang, B: A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterr. J. Math. 10, 677-692 (2013) MATHMathSciNetCrossRef Yang, B: A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterr. J. Math. 10, 677-692 (2013) MATHMathSciNetCrossRef
128.
Zurück zum Zitat Yang, B: On the norm of a self-adjoint operator and a new bilinear integral inequality. Acta Math. Sin. Engl. Ser. 23(7), 1311-1316 (2007) MATHMathSciNetCrossRef Yang, B: On the norm of a self-adjoint operator and a new bilinear integral inequality. Acta Math. Sin. Engl. Ser. 23(7), 1311-1316 (2007) MATHMathSciNetCrossRef
129.
Zurück zum Zitat Yang, B: On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities. Taiwan. J. Math. 12(2), 315-324 (2008) MATH Yang, B: On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities. Taiwan. J. Math. 12(2), 315-324 (2008) MATH
130.
131.
Zurück zum Zitat Yang, B: On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bull. Belg. Math. Soc. Simon Stevin 13, 577-584 (2006) MATHMathSciNet Yang, B: On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bull. Belg. Math. Soc. Simon Stevin 13, 577-584 (2006) MATHMathSciNet
132.
Zurück zum Zitat Yang, B: On a Hilbert-type operator with a symmetric homogeneous kernel of −1-order and applications. J. Inequal. Appl. 2007, Article ID 47812 (2007) CrossRef Yang, B: On a Hilbert-type operator with a symmetric homogeneous kernel of −1-order and applications. J. Inequal. Appl. 2007, Article ID 47812 (2007) CrossRef
133.
Zurück zum Zitat Yang, B: On the norm of a linear operator and its applications. Indian J. Pure Appl. Math. 39(3), 237-250 (2008) MATHMathSciNet Yang, B: On the norm of a linear operator and its applications. Indian J. Pure Appl. Math. 39(3), 237-250 (2008) MATHMathSciNet
134.
Zurück zum Zitat Bényi, A, Oh, C: Best constants for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) CrossRef Bényi, A, Oh, C: Best constants for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006) CrossRef
135.
Zurück zum Zitat Yang, B: A survey of the study of Hilbert-type inequalities with parameters. Adv. Math. 38(3), 257-268 (2009) MathSciNet Yang, B: A survey of the study of Hilbert-type inequalities with parameters. Adv. Math. 38(3), 257-268 (2009) MathSciNet
136.
Zurück zum Zitat Yang, B: On a Hilbert-type operator with a class of homogeneous kernels. J. Inequal. Appl. 2009, Article ID 572176 (2009) CrossRef Yang, B: On a Hilbert-type operator with a class of homogeneous kernels. J. Inequal. Appl. 2009, Article ID 572176 (2009) CrossRef
137.
Zurück zum Zitat Huang, Q, Yang, B: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2009, Article ID 192197 (2009) CrossRef Huang, Q, Yang, B: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2009, Article ID 192197 (2009) CrossRef
138.
Zurück zum Zitat Yang, B, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef Yang, B, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010) MATHMathSciNetCrossRef
139.
Zurück zum Zitat Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010) CrossRef Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010) CrossRef
140.
Zurück zum Zitat Yang, B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 76(1-2), 147-156 (2010) MATH Yang, B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 76(1-2), 147-156 (2010) MATH
141.
Zurück zum Zitat Yang, B, Krnić, M: Hilbert-type inequalities and related operators with homogeneous kernel of degree 0. Math. Inequal. Appl. 13(4), 817-839 (2010) MathSciNet Yang, B, Krnić, M: Hilbert-type inequalities and related operators with homogeneous kernel of degree 0. Math. Inequal. Appl. 13(4), 817-839 (2010) MathSciNet
142.
Zurück zum Zitat Adiyasuren, V, Batbold, T, Krnić, M: On several new Hilbert-type inequalities involving means operators. Acta Math. Sin. Engl. Ser. 29(8), 1493-1514 (2013) MATHMathSciNetCrossRef Adiyasuren, V, Batbold, T, Krnić, M: On several new Hilbert-type inequalities involving means operators. Acta Math. Sin. Engl. Ser. 29(8), 1493-1514 (2013) MATHMathSciNetCrossRef
143.
Zurück zum Zitat Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010) CrossRef Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010) CrossRef
144.
Zurück zum Zitat Adiyasuren, V, Batbold, T, Krnić, M: Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications. Appl. Math. Comput. 231, 148-159 (2014) MathSciNetCrossRef Adiyasuren, V, Batbold, T, Krnić, M: Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications. Appl. Math. Comput. 231, 148-159 (2014) MathSciNetCrossRef
145.
Zurück zum Zitat Wang, A, Yang, B: A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, 123 (2011) CrossRef Wang, A, Yang, B: A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, 123 (2011) CrossRef
146.
Zurück zum Zitat Yang, B: On the Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, B: On the Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
147.
Zurück zum Zitat Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009) Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009)
148.
Zurück zum Zitat Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., Sharjah (2011) Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., Sharjah (2011)
149.
Zurück zum Zitat Yang, B: Two Kinds of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012) Yang, B: Two Kinds of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)
150.
Zurück zum Zitat Yang, B: Topics on Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2013) Yang, B: Topics on Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2013)
151.
Zurück zum Zitat Yang, B: Hilbert-type integral operators: norms and inequalities. In: Pardalos, PM, Georgiev, PG, Srivastava, HM (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities. Springer, Berlin (2012) Yang, B: Hilbert-type integral operators: norms and inequalities. In: Pardalos, PM, Georgiev, PG, Srivastava, HM (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities. Springer, Berlin (2012)
152.
Zurück zum Zitat Rassias, MT, Yang, B: A multidimensional Hilbert-type integral inequalities related to the Riemann zeta function. In: Daras, NJ (ed.) Applications of Mathematics and Informatics in Science and Engineering. Springer, Berlin (2014) Rassias, MT, Yang, B: A multidimensional Hilbert-type integral inequalities related to the Riemann zeta function. In: Daras, NJ (ed.) Applications of Mathematics and Informatics in Science and Engineering. Springer, Berlin (2014)
153.
Zurück zum Zitat Yang, B: On Hilbert-type integral inequalities and their operator expressions. J. Guangdong Univ. Educ. 33(5), 1-17 (2013) MATH Yang, B: On Hilbert-type integral inequalities and their operator expressions. J. Guangdong Univ. Educ. 33(5), 1-17 (2013) MATH
154.
Zurück zum Zitat Yang, B: Multidimensional discrete Hilbert-type inequalities, operators and compositions. In: Milovanović, GV, Rassias, MT (eds.) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, Berlin (2014) Yang, B: Multidimensional discrete Hilbert-type inequalities, operators and compositions. In: Milovanović, GV, Rassias, MT (eds.) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, Berlin (2014)
155.
Zurück zum Zitat Yang, B, Debnath, L: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014) MATHCrossRef Yang, B, Debnath, L: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014) MATHCrossRef
156.
Zurück zum Zitat Yang, B: Half-discrete Hilbert-type inequalities, operators and compositions. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014) Yang, B: Half-discrete Hilbert-type inequalities, operators and compositions. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014)
157.
Zurück zum Zitat Yang, B: A basic Hilbert-type integral inequality with the homogeneous kernel of −1-degree and extensions. J. Guangdong Educ. Inst. 28(3), 1-10 (2008) MATH Yang, B: A basic Hilbert-type integral inequality with the homogeneous kernel of −1-degree and extensions. J. Guangdong Educ. Inst. 28(3), 1-10 (2008) MATH
158.
Zurück zum Zitat Yang, B: A new Hilbert-type integral inequality and its generalization. J. Jilin Univ. Sci. Ed. 43(5), 580-584 (2005) MATH Yang, B: A new Hilbert-type integral inequality and its generalization. J. Jilin Univ. Sci. Ed. 43(5), 580-584 (2005) MATH
159.
Zurück zum Zitat Yang, B, Liang, H: A new Hilbert-type integral inequality with a parameter. J. Henan Univ. Nat. Sci. 35(4), 4-8 (2005) MathSciNet Yang, B, Liang, H: A new Hilbert-type integral inequality with a parameter. J. Henan Univ. Nat. Sci. 35(4), 4-8 (2005) MathSciNet
Metadaten
Titel
A survey on the study of Hilbert-type inequalities
verfasst von
Qiang Chen
Bicheng Yang
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0829-7

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe

Premium Partner