Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

09.11.2021 | ORIGINAL ARTICLE

A turning simulation environment for geometric error estimation of thin-walled parts

verfasst von: Hareendran Manikandan, Tufan Chandra Bera

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machining of thin-walled parts is a key process in many industries such as aviation and marine and power engineering. During such machining operation, very aggressive cutting conditions such as large feed rate, higher cutting speed, and large depth of cut are used to achieve higher material removal rate. During machining, thin-walled workpiece faces significant elastic deformation due to higher cutting forces leading to dimensional and geometric inaccuracy to the component. The present research work aims to develop a multi-step and multi-level turning simulation environment for estimation of various geometric errors such as straightness, circularity, and cylindricity of thin-walled part. In the proposed simulation environment, various modules such as process geometry, cutting force, tool deflection, and surface error generation have been developed in MATLAB©. On the other end, the modules such as part geometry, workpiece deflection, and material removal are made using finite element analysis technique in APDL environment of the ANSYS© commercial software. The estimated 3D turned surface and concerned geometric errors can be obtained as outcomes of the simulation environment without conducting expensive actual machining operation for varying cutting conditions. In order to estimate geometric errors accurately, the combined effect of tangential and radial force components are equally important to take care of geometrical shape change and peripheral thinning of thin-wall parts. The proposed simulation environment can be used as a convenient and cost-effective tool for process planners and machining practitioners for adopting a suitable error compensation strategy. Machining experiments are performed further to conform the validity of simulation environment by comparing the predicted results to their measured counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Herranz S, Campa FJ, Lopez de Lacalle LN, Rivero A, Lamikiz A, Ukar E, Sanchez JA, Bravo U (2003) The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems. IMechE, Part B: J Eng Manuf 219:789–801CrossRef Herranz S, Campa FJ, Lopez de Lacalle LN, Rivero A, Lamikiz A, Ukar E, Sanchez JA, Bravo U (2003) The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems. IMechE, Part B: J Eng Manuf 219:789–801CrossRef
2.
Zurück zum Zitat Michalowska MZ, Kuczmaszewski J, Legutko S (2020) Techniques for thin-walled element milling with respect to minimizing post-machining deformations. Materials 13:4723CrossRef Michalowska MZ, Kuczmaszewski J, Legutko S (2020) Techniques for thin-walled element milling with respect to minimizing post-machining deformations. Materials 13:4723CrossRef
3.
Zurück zum Zitat Meadows JD (2009) Geometric dimensioning and tolerancing - applications, analysis & measurement. James D. Meadows & Associates. Inc., HendersonvilleCrossRef Meadows JD (2009) Geometric dimensioning and tolerancing - applications, analysis & measurement. James D. Meadows & Associates. Inc., HendersonvilleCrossRef
5.
Zurück zum Zitat Mackerle J (1999) Finite element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86(1–3):17–44CrossRef Mackerle J (1999) Finite element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86(1–3):17–44CrossRef
6.
Zurück zum Zitat Cheung E, Yuan W, Hua M (1999) Physical simulation of the deflection in turning of thin disk-shaped workpieces. Int J Adv Manuf Technol 15:863–868CrossRef Cheung E, Yuan W, Hua M (1999) Physical simulation of the deflection in turning of thin disk-shaped workpieces. Int J Adv Manuf Technol 15:863–868CrossRef
7.
Zurück zum Zitat Li X (2001) Real time prediction of workpiece errors for a CNC turning center, Part 1. Measurement and identification. Int J Adv Manuf Technol 17:649–653CrossRef Li X (2001) Real time prediction of workpiece errors for a CNC turning center, Part 1. Measurement and identification. Int J Adv Manuf Technol 17:649–653CrossRef
8.
Zurück zum Zitat Li X (2001) Real time prediction of workpiece errors for a CNC turning center, Part 4 Cutting forced induced errors. Int J Adv Manuf Technol 17:665–669CrossRef Li X (2001) Real time prediction of workpiece errors for a CNC turning center, Part 4 Cutting forced induced errors. Int J Adv Manuf Technol 17:665–669CrossRef
9.
Zurück zum Zitat Carrino L, Giorleo G, Polini W, Prisco U (2002) Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part I: Three dimensional theory. Int J Mach Tools Manuf 42:1509–1515CrossRef Carrino L, Giorleo G, Polini W, Prisco U (2002) Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part I: Three dimensional theory. Int J Mach Tools Manuf 42:1509–1515CrossRef
10.
Zurück zum Zitat Carrino L, Giorleo G, Polini W, Prisco U (2002) Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part II: Machining process analysis and dimensional error estimate. Int J Mach Tools Manuf 42:1517–1525CrossRef Carrino L, Giorleo G, Polini W, Prisco U (2002) Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part II: Machining process analysis and dimensional error estimate. Int J Mach Tools Manuf 42:1517–1525CrossRef
11.
Zurück zum Zitat Mayer JRR, Phan AV, Cloutier G (2000) Prediction of diameter errors in bar turning: a computationally effective model. Appl Math Model 24:943–956CrossRef Mayer JRR, Phan AV, Cloutier G (2000) Prediction of diameter errors in bar turning: a computationally effective model. Appl Math Model 24:943–956CrossRef
12.
Zurück zum Zitat Phan AV, Baron L, Mayer JRR, Cloutier G (2003) Finite element and experimental studies of diametral errors in cantilever bar turning. Appl Math Model 27:221–232CrossRef Phan AV, Baron L, Mayer JRR, Cloutier G (2003) Finite element and experimental studies of diametral errors in cantilever bar turning. Appl Math Model 27:221–232CrossRef
13.
Zurück zum Zitat Qiang LZ (2000) Finite difference calculations of the deformations of the multi-diameter workpieces during turning. J Mater Process Technol 98(3):310–316CrossRef Qiang LZ (2000) Finite difference calculations of the deformations of the multi-diameter workpieces during turning. J Mater Process Technol 98(3):310–316CrossRef
14.
Zurück zum Zitat Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 54–55:34–45CrossRef Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 54–55:34–45CrossRef
16.
Zurück zum Zitat Bera TC, Manikandan H, Bansal A, Nema D (2018) A method to determine cutting force coefficients in turning using mechanistic approach. Int J Mater Mech Manuf 6(2):99–103 Bera TC, Manikandan H, Bansal A, Nema D (2018) A method to determine cutting force coefficients in turning using mechanistic approach. Int J Mater Mech Manuf 6(2):99–103
17.
Zurück zum Zitat Polini W, Prisco U (2003) The estimation of the diametric error in bar turning: a comparison among three cutting force models. Int J Adv Manuf Technol 22:465–474CrossRef Polini W, Prisco U (2003) The estimation of the diametric error in bar turning: a comparison among three cutting force models. Int J Adv Manuf Technol 22:465–474CrossRef
18.
Zurück zum Zitat Benardos PG, Mosialos S, Vosniakos GC (2006) Prediction of workpiece elastic deflections under cutting forces in turning. Robot Comput Integr Manuf 22:505–514CrossRef Benardos PG, Mosialos S, Vosniakos GC (2006) Prediction of workpiece elastic deflections under cutting forces in turning. Robot Comput Integr Manuf 22:505–514CrossRef
19.
Zurück zum Zitat Malluck JA, Melkote SN (2004) Modeling of deformation of ring shaped workpieces due to chucking and cutting forces. ASME J Manuf Sci Eng 126:141–147CrossRef Malluck JA, Melkote SN (2004) Modeling of deformation of ring shaped workpieces due to chucking and cutting forces. ASME J Manuf Sci Eng 126:141–147CrossRef
20.
Zurück zum Zitat Beekhuis B, Brinksmeier E, Garbrecht M, Solter J (2009) Improving the shape quality of bearing rings in soft turning by using a fast tool servo. Prod Eng Res Devel 3:69–474CrossRef Beekhuis B, Brinksmeier E, Garbrecht M, Solter J (2009) Improving the shape quality of bearing rings in soft turning by using a fast tool servo. Prod Eng Res Devel 3:69–474CrossRef
21.
Zurück zum Zitat Beekhuis B, Stoebener D, Brinksmeier E (2012) Adapted non-circular soft turning of bearing rings-impacted of process machine interactions on compensation potentials. Procedia CIRP 1:540–545CrossRef Beekhuis B, Stoebener D, Brinksmeier E (2012) Adapted non-circular soft turning of bearing rings-impacted of process machine interactions on compensation potentials. Procedia CIRP 1:540–545CrossRef
23.
Zurück zum Zitat Heisel U, Kang C (2011) Model based form error compensation in the turning of thin-walled cylindrical parts. Prod Eng Res Devel 5(2):151–158CrossRef Heisel U, Kang C (2011) Model based form error compensation in the turning of thin-walled cylindrical parts. Prod Eng Res Devel 5(2):151–158CrossRef
24.
Zurück zum Zitat Schindler S, Zimmermann M, Aurich JC, Steinmann P (2013) Modeling deformations of the workpiece and removal of material when turning. Procedia CIRP 8:39–44CrossRef Schindler S, Zimmermann M, Aurich JC, Steinmann P (2013) Modeling deformations of the workpiece and removal of material when turning. Procedia CIRP 8:39–44CrossRef
25.
Zurück zum Zitat Toubhans B, Lorong P, Viprey F, Fromentin G, Karaouni H (2021) A versatile approach, considering tool wear, to simulate undercut error when turning thin-walled workpiece. Int J Adv Manuf Technol 115:1919–1929CrossRef Toubhans B, Lorong P, Viprey F, Fromentin G, Karaouni H (2021) A versatile approach, considering tool wear, to simulate undercut error when turning thin-walled workpiece. Int J Adv Manuf Technol 115:1919–1929CrossRef
26.
Zurück zum Zitat Toubhans B, Viprey F, Fromentin G, Karaouni H (2019) Prediction of form error during face turning on flexible Inconel 718 workpiece. Procedia CIRP 82:290–295CrossRef Toubhans B, Viprey F, Fromentin G, Karaouni H (2019) Prediction of form error during face turning on flexible Inconel 718 workpiece. Procedia CIRP 82:290–295CrossRef
27.
Zurück zum Zitat Zhang B, Zhao C, Xu D, Wen B (2019) Simulation analysis and experimental verification of 2D shape and position error on-line detection for turning workpiece. Measurement 146:827–837CrossRef Zhang B, Zhao C, Xu D, Wen B (2019) Simulation analysis and experimental verification of 2D shape and position error on-line detection for turning workpiece. Measurement 146:827–837CrossRef
28.
Zurück zum Zitat Kilic B, Aguirre-Cruz JA, Raman S (2007) Inspection of the cylindrical surface feature after turning using coordinate metrology. Int J Mach Tools Manuf 47(12–13):1893–1903CrossRef Kilic B, Aguirre-Cruz JA, Raman S (2007) Inspection of the cylindrical surface feature after turning using coordinate metrology. Int J Mach Tools Manuf 47(12–13):1893–1903CrossRef
29.
Zurück zum Zitat Lee JC, Shimizu Y, Gao W, Oh J, Park CH (2014) Precision evaluation of surface form error of a large scale roll workpiece on a drum roll lathe. Precis Eng 38:839–848CrossRef Lee JC, Shimizu Y, Gao W, Oh J, Park CH (2014) Precision evaluation of surface form error of a large scale roll workpiece on a drum roll lathe. Precis Eng 38:839–848CrossRef
30.
Zurück zum Zitat Zheng P, Liu D, Zhao F, Zhang L (2019) An efficient method for minimum zone cylindricity error evaluation using kinematic geometry optimization algorithm. Measurement 135:886–895CrossRef Zheng P, Liu D, Zhao F, Zhang L (2019) An efficient method for minimum zone cylindricity error evaluation using kinematic geometry optimization algorithm. Measurement 135:886–895CrossRef
31.
Zurück zum Zitat Shawky AM, Elbestawi MA (1996) In-process evaluation of workpiece geometrical tolerances in bar turning. Int J Mach Tools Manuf 36:33–46CrossRef Shawky AM, Elbestawi MA (1996) In-process evaluation of workpiece geometrical tolerances in bar turning. Int J Mach Tools Manuf 36:33–46CrossRef
32.
Zurück zum Zitat Estrems M, Arizmendi M, Zabaleta AZ, Gil A (2015) Numerical method to calculate the deformation of thin rings during turning operation and its influence on the roundness tolerance. Procedia Engineering 132:872–879CrossRef Estrems M, Arizmendi M, Zabaleta AZ, Gil A (2015) Numerical method to calculate the deformation of thin rings during turning operation and its influence on the roundness tolerance. Procedia Engineering 132:872–879CrossRef
33.
Zurück zum Zitat Shunmugam MS (1986) On assessment of geometric errors. Int J Prod Res 24:413–425CrossRef Shunmugam MS (1986) On assessment of geometric errors. Int J Prod Res 24:413–425CrossRef
34.
Zurück zum Zitat Namboothiri VNN, Shunmugam MS (1998) Function-oriented form evaluation of engineering surfaces. Precis Eng 22:98–109CrossRef Namboothiri VNN, Shunmugam MS (1998) Function-oriented form evaluation of engineering surfaces. Precis Eng 22:98–109CrossRef
35.
Zurück zum Zitat Samuel GL, Shunmugam MS (2003) Evaluation of circularity and sphericity from coordinate measurement data. J Mater Process Technol 139:90–95CrossRef Samuel GL, Shunmugam MS (2003) Evaluation of circularity and sphericity from coordinate measurement data. J Mater Process Technol 139:90–95CrossRef
36.
Zurück zum Zitat Cheng K (2009) Machining dynamics, fundamentals, applications and practices. Springer-Verlog London Limited, LondonCrossRef Cheng K (2009) Machining dynamics, fundamentals, applications and practices. Springer-Verlog London Limited, LondonCrossRef
37.
Zurück zum Zitat Altintas Y (2012) Manufacturing Automation: metal cutting mechanics, machine tool vibrations and CNC design. Cambridge University Press, New York Altintas Y (2012) Manufacturing Automation: metal cutting mechanics, machine tool vibrations and CNC design. Cambridge University Press, New York
38.
Zurück zum Zitat Croppi L (2019) Modeling and optimization of turning process for thin-walled parts and slender tools. Dissertation, Universita Degli Studi di Firenze, Firenze Croppi L (2019) Modeling and optimization of turning process for thin-walled parts and slender tools. Dissertation, Universita Degli Studi di Firenze, Firenze
39.
Zurück zum Zitat Manikandan H (2020) Investigations on characterization of surface errors in turning of thin-walled components. Dissertation, Birla Institute of Technology and Science, Pilani Manikandan H (2020) Investigations on characterization of surface errors in turning of thin-walled components. Dissertation, Birla Institute of Technology and Science, Pilani
40.
Zurück zum Zitat Markopoulos P, Davim JP (2018) Advanced machining processes-innovative modeling techniques. CRC Press, Taylor & Francis Group, Florida Markopoulos P, Davim JP (2018) Advanced machining processes-innovative modeling techniques. CRC Press, Taylor & Francis Group, Florida
41.
Zurück zum Zitat Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker Inc, New York, USA Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker Inc, New York, USA
42.
Zurück zum Zitat Davim JP (2008) Machining fundamentals and recent advances. Springer-Verlag London Limited, London, UK Davim JP (2008) Machining fundamentals and recent advances. Springer-Verlag London Limited, London, UK
43.
Zurück zum Zitat Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice. CRC Press Taylor & Francis Group, UKCrossRef Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice. CRC Press Taylor & Francis Group, UKCrossRef
44.
Zurück zum Zitat Zuo X, Zhang C, Li H, Wu X, Zhou X (2018) Error analysis and compensation in machining thin-walled workpieces based on the inverse reconstruction model. Int J Adv Manuf Technol 95:2369–2377CrossRef Zuo X, Zhang C, Li H, Wu X, Zhou X (2018) Error analysis and compensation in machining thin-walled workpieces based on the inverse reconstruction model. Int J Adv Manuf Technol 95:2369–2377CrossRef
45.
Zurück zum Zitat Lee SW, Nestler A (2012) Virtual workpiece: workpiece representation for material removal process. Int J Adv Manuf Technol 58:443–463CrossRef Lee SW, Nestler A (2012) Virtual workpiece: workpiece representation for material removal process. Int J Adv Manuf Technol 58:443–463CrossRef
Metadaten
Titel
A turning simulation environment for geometric error estimation of thin-walled parts
verfasst von
Hareendran Manikandan
Tufan Chandra Bera
Publikationsdatum
09.11.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-08298-3

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.