Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2021

18.05.2021 | ORIGINAL ARTICLE

A versatile approach, considering tool wear, to simulate undercut error when turning thin-walled workpieces

verfasst von: Bastien Toubhans, Philippe Lorong, Fabien Viprey, Guillaume Fromentin, Habib Karaouni

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In-process workpiece elastic deflection is the major source of geometrical error when machining low-stiffness workpieces. It creates an undercut error which needs to be corrected by time-consuming and labour-intensive operations. For this reason, cutting process simulation is growing in interest. To do so, a model representing the workpiece flexibility is coupled with a model to predict the applied cutting forces. For a given tool-material set, these cutting forces depend on the cut section, which therefore depends on current deflection of the part during machining, but also on the level of tool wear. This research work focuses on developing a general coupling approach to tackle this challenge. The case study is the finish turning on thin Inconel 718 discs. The cutting forces are predicted by a mechanistic model taking tool wear into account. The wear effect is expressed using the cumulative removed volume. The workpiece stiffness is determined with a reduced model using a modal basis. When dealing with large workpieces, it results in a remarkable computing time reduction during the time domain simulation. Cutting tests with varying engagements are simulated in a dexel-based versatile framework and undercut errors are compared to experimental observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ma J, He G, Liu Z, Qin F, Chen S, Zhao X (2018) Instantaneous cutting-amount planning for machining deformation homogenization based on position-dependent rigidity of thin-walled surface parts. J Manuf Process 34(Part A):401–411CrossRef Ma J, He G, Liu Z, Qin F, Chen S, Zhao X (2018) Instantaneous cutting-amount planning for machining deformation homogenization based on position-dependent rigidity of thin-walled surface parts. J Manuf Process 34(Part A):401–411CrossRef
2.
Zurück zum Zitat Chen W, Xue J, Tang D, Chen H, Qu S (2009) Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. Int J Mach Tools Manuf 49(11):859–864CrossRef Chen W, Xue J, Tang D, Chen H, Qu S (2009) Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. Int J Mach Tools Manuf 49(11):859–864CrossRef
3.
Zurück zum Zitat Yan Q, Luo M, Tang K (2018) Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint. Comput Aided Des 100:14–29CrossRef Yan Q, Luo M, Tang K (2018) Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint. Comput Aided Des 100:14–29CrossRef
4.
Zurück zum Zitat Huang T, Zhang X-M, Ding H (2017) Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades. Procedia CIRP 58:210–215CrossRef Huang T, Zhang X-M, Ding H (2017) Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades. Procedia CIRP 58:210–215CrossRef
5.
Zurück zum Zitat Wang J, Ibaraki S, Matsubara A (2017) A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining. Precis Eng 50(Supplement C):506–514CrossRef Wang J, Ibaraki S, Matsubara A (2017) A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining. Precis Eng 50(Supplement C):506–514CrossRef
6.
Zurück zum Zitat Fei J, Xu F, Lin B, Huang T (2020) State of the art in milling process of the flexible workpiece. Int J Adv Manuf Technol 109(5):1695–1725CrossRef Fei J, Xu F, Lin B, Huang T (2020) State of the art in milling process of the flexible workpiece. Int J Adv Manuf Technol 109(5):1695–1725CrossRef
7.
Zurück zum Zitat Dépincé P, Hascoët J-Y (2006) Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection. Int J Mach Tools Manuf 46(9):945–956CrossRef Dépincé P, Hascoët J-Y (2006) Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection. Int J Mach Tools Manuf 46(9):945–956CrossRef
8.
Zurück zum Zitat Dépincé P, Hascoet J-Y (2006) Active integration of tool deflection effects in end milling. Part 1. Prediction of milled surfaces. Int J Mach Tools Manuf 46(9):937–944CrossRef Dépincé P, Hascoet J-Y (2006) Active integration of tool deflection effects in end milling. Part 1. Prediction of milled surfaces. Int J Mach Tools Manuf 46(9):937–944CrossRef
9.
Zurück zum Zitat Ratchev S, Govender E, Nikov S, Phuah K, Tsiklos G (2003) Force and deflection modelling in milling of low-rigidity complex parts. J Mater Process Technol 143–144:796–801CrossRef Ratchev S, Govender E, Nikov S, Phuah K, Tsiklos G (2003) Force and deflection modelling in milling of low-rigidity complex parts. J Mater Process Technol 143–144:796–801CrossRef
10.
Zurück zum Zitat Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe
11.
Zurück zum Zitat Arrazola PJ, Garay A, Fernandez E, Ostolaza K (2014) Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions. Int J Mach Mach Mater 15(1–2):84–100 Arrazola PJ, Garay A, Fernandez E, Ostolaza K (2014) Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions. Int J Mach Mach Mater 15(1–2):84–100
12.
Zurück zum Zitat Toubhans B, Fromentin G, Viprey F, Karaouni H, Dorlin T (2020) Machinability of inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity. J Mater Process Technol:116809 Toubhans B, Fromentin G, Viprey F, Karaouni H, Dorlin T (2020) Machinability of inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity. J Mater Process Technol:116809
13.
Zurück zum Zitat Sawangsri W, Cheng K (2016) An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc Inst Mech Eng Part B J Eng Manuf 230(3):405–415CrossRef Sawangsri W, Cheng K (2016) An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc Inst Mech Eng Part B J Eng Manuf 230(3):405–415CrossRef
14.
Zurück zum Zitat Cheng K (2008) Machining dynamics: fundamentals, applications and practices. Springer Science & Business Media Cheng K (2008) Machining dynamics: fundamentals, applications and practices. Springer Science & Business Media
15.
Zurück zum Zitat Lee SW, Nestler A (2012) Virtual workpiece: workpiece representation for material removal process. Int J Adv Manuf Technol 58(5–8):443–463CrossRef Lee SW, Nestler A (2012) Virtual workpiece: workpiece representation for material removal process. Int J Adv Manuf Technol 58(5–8):443–463CrossRef
16.
Zurück zum Zitat Van Hook T (1986) Real-time shaded NC milling display. ACM SIGGRAPH Comput. Graph Van Hook T (1986) Real-time shaded NC milling display. ACM SIGGRAPH Comput. Graph
17.
Zurück zum Zitat Coffignal G, Lorong P, Illoul L (2015) A general method to accurately simulate material removal in virtual machining of flexible workpieces. Technical Report, PIMM laboratory, 40 pages Coffignal G, Lorong P, Illoul L (2015) A general method to accurately simulate material removal in virtual machining of flexible workpieces. Technical Report, PIMM laboratory, 40 pages
18.
Zurück zum Zitat Lorong P, Coffignal G, Balmes E, Guskov M, Texier A (2012) Simulation of a finishing operation: milling of a turbine blade and influence of damping. Eng Syst Design Anal 44878:89–98 Lorong P, Coffignal G, Balmes E, Guskov M, Texier A (2012) Simulation of a finishing operation: milling of a turbine blade and influence of damping. Eng Syst Design Anal 44878:89–98
Metadaten
Titel
A versatile approach, considering tool wear, to simulate undercut error when turning thin-walled workpieces
verfasst von
Bastien Toubhans
Philippe Lorong
Fabien Viprey
Guillaume Fromentin
Habib Karaouni
Publikationsdatum
18.05.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07243-8

Weitere Artikel der Ausgabe 5-6/2021

The International Journal of Advanced Manufacturing Technology 5-6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.