Skip to main content
Erschienen in: Computational Mechanics 2/2016

01.02.2016 | Original Paper

A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications

verfasst von: Heng Chi, Oscar Lopez-Pamies, Glaucio H. Paulino

Erschienen in: Computational Mechanics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e.g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the domain. From a computational perspective, the proposed formulation is shown to reduce to a set of algebraic constraints that can be implemented efficiently in terms of both single-field and mixed finite elements of arbitrary order. For demonstration purposes, applications of the proposed rigid-body-constraint formulation are illustrated within the context of elastomers, reinforced with periodic and random distributions of rigid filler particles, undergoing finite deformations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For instance, the shear modulus of a typical rubber is in the order of 0.1 MPa while the shear modulus of carbon black is in the order of 10 GPa.
 
2
We note that different mixed variational principles which do not require any splitting of the deformation gradient into deviatoric (\(\overline{\mathbf{F }}\)) and volumetric (\(\mathrm{det}\,\mathbf F \)) parts are also available [5].
 
Literatur
1.
Zurück zum Zitat Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeCrossRefMATH Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeCrossRefMATH
2.
Zurück zum Zitat Brink U, Stein E (1996) On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech 19(1):105–119CrossRefMATH Brink U, Stein E (1996) On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech 19(1):105–119CrossRefMATH
3.
Zurück zum Zitat Chang TYP, Saleeb AF, Li G (1991) Large strain analysis of rubber-like materials based on a perturbed lagrangian variational principle. Comput Mech 8(4):221–233CrossRefMATH Chang TYP, Saleeb AF, Li G (1991) Large strain analysis of rubber-like materials based on a perturbed lagrangian variational principle. Comput Mech 8(4):221–233CrossRefMATH
4.
Zurück zum Zitat Chen JS, Han W, Wu CT, Duan W (1997) On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput Methods Appl Mech Eng 142(3):335–351CrossRefMathSciNetMATH Chen JS, Han W, Wu CT, Duan W (1997) On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput Methods Appl Mech Eng 142(3):335–351CrossRefMathSciNetMATH
5.
Zurück zum Zitat Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328CrossRefMathSciNet Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328CrossRefMathSciNet
6.
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, 4th edn. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, 4th edn. Wiley, New York
7.
Zurück zum Zitat Dunavant D (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148CrossRefMathSciNetMATH Dunavant D (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148CrossRefMathSciNetMATH
8.
Zurück zum Zitat Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O (2015) Filled elastomers: a theory of filler reinforcement based on hydrodynamic and interphasial effects. J Mech Phys Solids. 80:37–67 Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O (2015) Filled elastomers: a theory of filler reinforcement based on hydrodynamic and interphasial effects. J Mech Phys Solids. 80:37–67
9.
Zurück zum Zitat Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, Mineola Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, Mineola
10.
Zurück zum Zitat Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale secondorder computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550CrossRefMATH Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale secondorder computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550CrossRefMATH
11.
Zurück zum Zitat Leblanc JL (2010) Filled polymers: science and industrial applications. CRC Press, Boca Raton Leblanc JL (2010) Filled polymers: science and industrial applications. CRC Press, Boca Raton
12.
Zurück zum Zitat Lopez-Pamies O (2010) An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids. J Appl Mech 77(2):021016CrossRef Lopez-Pamies O (2010) An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids. J Appl Mech 77(2):021016CrossRef
13.
Zurück zum Zitat Lopez-Pamies O, Goudarzi T, Danas K (2013) The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—a simple explicit approximation for finite-concentration suspensions. J Mech Phys Solids 61:19–37CrossRefMathSciNetMATH Lopez-Pamies O, Goudarzi T, Danas K (2013) The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—a simple explicit approximation for finite-concentration suspensions. J Mech Phys Solids 61:19–37CrossRefMathSciNetMATH
14.
Zurück zum Zitat Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, ReadingMATH Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, ReadingMATH
15.
Zurück zum Zitat Michel J-C, Lopez-Pamies O, Ponte Castañeda P, Triantafyllidis N (2010) Microscopic and macroscopic instabilities in finitely strained fiber-reinforced elastomers. J Mech Phys Solids 58(11):1776–1803CrossRefMathSciNetMATH Michel J-C, Lopez-Pamies O, Ponte Castañeda P, Triantafyllidis N (2010) Microscopic and macroscopic instabilities in finitely strained fiber-reinforced elastomers. J Mech Phys Solids 58(11):1776–1803CrossRefMathSciNetMATH
16.
Zurück zum Zitat Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322 Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322
17.
Zurück zum Zitat Miehe C, Lambrecht M (2003) A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: small-strain theory for standard dissipative materials. Comput Methods Appl Mech Eng 192(5):473–508 Miehe C, Lambrecht M (2003) A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: small-strain theory for standard dissipative materials. Comput Methods Appl Mech Eng 192(5):473–508
18.
Zurück zum Zitat Moraleda J, Segurado J, LLorca J (2009) Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach. J Mech Phys Solids 57(9):1596–1613 Moraleda J, Segurado J, LLorca J (2009) Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach. J Mech Phys Solids 57(9):1596–1613
19.
Zurück zum Zitat Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121 Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121
20.
Zurück zum Zitat Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1):177–208 Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1):177–208
21.
Zurück zum Zitat Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066 Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066
22.
Zurück zum Zitat Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1):357–409 Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1):357–409
23.
Zurück zum Zitat Webb J (1990) Imposing linear constraints in finite-element analysis. Commun Appl Numer Methods 6(6):471–475 Webb J (1990) Imposing linear constraints in finite-element analysis. Commun Appl Numer Methods 6(6):471–475
24.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite element methods, vol 4. Springer, Berlin Wriggers P (2008) Nonlinear finite element methods, vol 4. Springer, Berlin
25.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Oxford Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Oxford
Metadaten
Titel
A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications
verfasst von
Heng Chi
Oscar Lopez-Pamies
Glaucio H. Paulino
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1234-2

Weitere Artikel der Ausgabe 2/2016

Computational Mechanics 2/2016 Zur Ausgabe

Neuer Inhalt