Skip to main content
Erschienen in: Fluid Dynamics 3/2021

01.05.2021

A Very Large Eddy Simulation Model Using a Reductionist Inlet Turbulence Generator and Wall Modeling for Stable Atmospheric Boundary Layers

verfasst von: M. Ahmadi-Baloutaki, A. A. Aliabadi

Erschienen in: Fluid Dynamics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite many advances in numerical simulation of stable boundary layers (SBL), most of the models developed are complex and computationally expensive. A computational fluid dynamics (CFD) strategy is proposed that combines very large eddy simulation (VLES) with a reductionist inflow turbulence generator and wall modeling aimed at affordable and practical simulation of SBL. Unlike the standard LES requiring the filter width to be of the scale of grid size, the filter width in VLES can be set at a value between the grid size and the large characteristic length scales of the flow. This strategy, along with the application of wall treatments, results in the significant reduction of computational costs. Moreover, the reductionist approach of the inflow turbulence generator minimizes the number of required input parameters to the model, which makes the model suitable for practical applications. A series of sensitivity studies are conducted to refine the numerical parameters including the grid resolution, filter width, and the inflow turbulence generator variables controlling the length and time scales of the eddies generated at the inlet. The performance of the model is successfully evaluated against wind-tunnel measurements for mean velocity, mean temperature, and turbulence profiles for four different thermal stability levels ranging from weak to strong stability. The spectral analysis of the model for velocity components, temperature, momentum, and heat fluxes showed that the model is capable of successfully resolving the energy cascade for almost two orders of magnitude of wave numbers and partially matching the well-known log-log slopes for the inertial subrange.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Van Buren, O. Williams, and A. J. Smits, “Turbulent boundary layer response to the introduction of stable stratification,” J. Fluid Mech. 811, 569–581 (2017).ADSMathSciNetMATHCrossRef T. Van Buren, O. Williams, and A. J. Smits, “Turbulent boundary layer response to the introduction of stable stratification,” J. Fluid Mech. 811, 569–581 (2017).ADSMathSciNetMATHCrossRef
2.
Zurück zum Zitat J. Huang and E. Bou-Zeid, “Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: A large-eddy simulation study,” J. Atmos. Sci. 70, 1513–1527 (2013).ADSCrossRef J. Huang and E. Bou-Zeid, “Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: A large-eddy simulation study,” J. Atmos. Sci. 70, 1513–1527 (2013).ADSCrossRef
3.
Zurück zum Zitat R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht, 1988).MATHCrossRef R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht, 1988).MATHCrossRef
4.
Zurück zum Zitat A. A. Aliabadi, M. Moradi, D. Clement, W. D. Lubitz, and B. Gharabaghi, “Flow and temperature dynamics in an urban canyon under a comprehensive set of wind directions, wind speeds, and thermal stability conditions,” Environ. Fluid Mech. 19, 81–109 (2019).CrossRef A. A. Aliabadi, M. Moradi, D. Clement, W. D. Lubitz, and B. Gharabaghi, “Flow and temperature dynamics in an urban canyon under a comprehensive set of wind directions, wind speeds, and thermal stability conditions,” Environ. Fluid Mech. 19, 81–109 (2019).CrossRef
5.
Zurück zum Zitat A. A. Aliabadi, Theory and Applications of Turbulence: A Fundamental Approach for Scientists and Engineers (Amir A. Aliabadi Publ., Guelph, 2018). A. A. Aliabadi, Theory and Applications of Turbulence: A Fundamental Approach for Scientists and Engineers (Amir A. Aliabadi Publ., Guelph, 2018).
6.
Zurück zum Zitat V. Kumar, J. Kleissl, C. Meneveau, and M. B. Parlange, “Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues.” Water Resource Res. 42(W06D09), 1–18 (2006). V. Kumar, J. Kleissl, C. Meneveau, and M. B. Parlange, “Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues.” Water Resource Res. 42(W06D09), 1–18 (2006).
7.
Zurück zum Zitat J. Sandham and M. L. Waite, “Spectral energy balance in dry convective boundary layers,” J. Turbul. 16(7), 650—675 (2015).ADSMathSciNetCrossRef J. Sandham and M. L. Waite, “Spectral energy balance in dry convective boundary layers,” J. Turbul. 16(7), 650—675 (2015).ADSMathSciNetCrossRef
8.
Zurück zum Zitat B.-S. Han, J.-J. Baik, S.-B. Park, and K.-H. Kwak, “Large-eddy simulations of reactive pollutant dispersion in the convective boundary layer over flat and urban-like surfaces,” Boundary-Layer Meteorol. 172(2), 271–289, (2019).ADSCrossRef B.-S. Han, J.-J. Baik, S.-B. Park, and K.-H. Kwak, “Large-eddy simulations of reactive pollutant dispersion in the convective boundary layer over flat and urban-like surfaces,” Boundary-Layer Meteorol. 172(2), 271–289, (2019).ADSCrossRef
9.
Zurück zum Zitat A. A. Aliabadi, N. Veriotes, and G. Pedro, “A very large-eddy simulation (VLES) model for the investigation of the neutral atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 183, 152—171 (2018).CrossRef A. A. Aliabadi, N. Veriotes, and G. Pedro, “A very large-eddy simulation (VLES) model for the investigation of the neutral atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 183, 152—171 (2018).CrossRef
10.
Zurück zum Zitat G. R. Tabor and M. H. Baba-Ahmadi, “Inlet conditions for large eddy simulation: A review,” Comput. Fluids 39(4), 553–567 (2010).MathSciNetMATHCrossRef G. R. Tabor and M. H. Baba-Ahmadi, “Inlet conditions for large eddy simulation: A review,” Comput. Fluids 39(4), 553–567 (2010).MathSciNetMATHCrossRef
11.
Zurück zum Zitat T. S. Lund, X. Wu, and K. D. Squires, “Generation of turbulent inflow data for spatially-developing boundary layer simulations,” J. Comput. Phys. 140(2), 233–258 (1998).ADSMathSciNetMATHCrossRef T. S. Lund, X. Wu, and K. D. Squires, “Generation of turbulent inflow data for spatially-developing boundary layer simulations,” J. Comput. Phys. 140(2), 233–258 (1998).ADSMathSciNetMATHCrossRef
12.
Zurück zum Zitat P. R. Spalart, “Direct simulation of a turbulent boundary layer up to Rθ = 1410,” J. Fluid Mech. 187, 61–98 (1988).ADSMATHCrossRef P. R. Spalart, “Direct simulation of a turbulent boundary layer up to Rθ = 1410,” J. Fluid Mech. 187, 61–98 (1988).ADSMATHCrossRef
13.
Zurück zum Zitat M. E. Sergent, Towards a coupling methodology between large eddy simulation and statistical models (Ph.D. Thesis, École Centrale De Lyon, Lyon, France, 2002). M. E. Sergent, Towards a coupling methodology between large eddy simulation and statistical models (Ph.D. Thesis, École Centrale De Lyon, Lyon, France, 2002).
14.
Zurück zum Zitat S. Benhamadouche, N. Jarrin, Y. Addad, and D. Laurence, “Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation,” Progr. Comput. Fluid Dyn. 6(1–3), 50—57 (2006).MathSciNetMATHCrossRef S. Benhamadouche, N. Jarrin, Y. Addad, and D. Laurence, “Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation,” Progr. Comput. Fluid Dyn. 6(1–3), 50—57 (2006).MathSciNetMATHCrossRef
15.
Zurück zum Zitat F. Mathey, D. Cokljat, J. P. Bertoglio, and E. Sergent, “Assessment of the vortex method for large eddy simulation inlet conditions,” Progr. Comput. Fluid Dyn. 6(1–3), 58–67 (2006). F. Mathey, D. Cokljat, J. P. Bertoglio, and E. Sergent, “Assessment of the vortex method for large eddy simulation inlet conditions,” Progr. Comput. Fluid Dyn. 6(1–3), 58–67 (2006).
16.
Zurück zum Zitat B. Xie, F. Gao, J. Boudet, L. Shao, and L. Lu, “Improved vortex method for large-eddy simulation inflow generation,” Computers Fluids 168, 87–100 (2018).MathSciNetMATHCrossRef B. Xie, F. Gao, J. Boudet, L. Shao, and L. Lu, “Improved vortex method for large-eddy simulation inflow generation,” Computers Fluids 168, 87–100 (2018).MathSciNetMATHCrossRef
17.
Zurück zum Zitat H. Aboshosha, A. Elshaer, G. T. Bitsuamlak, and A. El Damatty, “J. Wind Eng. Ind. Aerodyn. 142, 198–216 (2015).CrossRef H. Aboshosha, A. Elshaer, G. T. Bitsuamlak, and A. El Damatty, “J. Wind Eng. Ind. Aerodyn. 142, 198–216 (2015).CrossRef
18.
Zurück zum Zitat R. J. Beare and M. K. Macvean, “Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings,” Boundary-Layer Meteorol. 112, 257 (2004).ADSCrossRef R. J. Beare and M. K. Macvean, “Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings,” Boundary-Layer Meteorol. 112, 257 (2004).ADSCrossRef
19.
Zurück zum Zitat S. R. de Roode, H. J. J. Jonker, B. J. H. Van De Wiel, V. Vertregt, and V. Perrin, “A diagnosis of excessive mixing in Smagorinsky subfilter-scale turbulent kinetic energy models,” J. Atmos. Sci. 74, 1495–1511 (2017).ADSCrossRef S. R. de Roode, H. J. J. Jonker, B. J. H. Van De Wiel, V. Vertregt, and V. Perrin, “A diagnosis of excessive mixing in Smagorinsky subfilter-scale turbulent kinetic energy models,” J. Atmos. Sci. 74, 1495–1511 (2017).ADSCrossRef
20.
Zurück zum Zitat J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic equations,” Mon. Weather Rev. 91, 99–164 (1963).ADSCrossRef J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic equations,” Mon. Weather Rev. 91, 99–164 (1963).ADSCrossRef
21.
Zurück zum Zitat J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner, “Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions,” J. Fluid Mech. 526, 19–66 (2005).ADSMathSciNetMATHCrossRef J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner, “Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions,” J. Fluid Mech. 526, 19–66 (2005).ADSMathSciNetMATHCrossRef
22.
Zurück zum Zitat X.-X. Li, R. E. Britter, T. Y. Koh, L. K. Norford, C.-H. Liu, D. Entekhabi, and D. Y. C. Leung, “Large-eddy simulation of flow and pollutant transport in urban street canyons with ground heating,” Boundary-Layer Meteorol. 137(2), 187–204 (2010).ADSCrossRef X.-X. Li, R. E. Britter, T. Y. Koh, L. K. Norford, C.-H. Liu, D. Entekhabi, and D. Y. C. Leung, “Large-eddy simulation of flow and pollutant transport in urban street canyons with ground heating,” Boundary-Layer Meteorol. 137(2), 187–204 (2010).ADSCrossRef
23.
Zurück zum Zitat A. A. Aliabadi, E. S. Krayenhoff, N. Nazarian, L. W. Chew, P. R. Armstrong, A. Afshari, and L. K. Norford, “Effects of roof-edge roughness on air temperature and pollutant concentration in urban canyons,” Boundary-Layer Meteorol. 164(2), 249–279 (2017).ADSCrossRef A. A. Aliabadi, E. S. Krayenhoff, N. Nazarian, L. W. Chew, P. R. Armstrong, A. Afshari, and L. K. Norford, “Effects of roof-edge roughness on air temperature and pollutant concentration in urban canyons,” Boundary-Layer Meteorol. 164(2), 249–279 (2017).ADSCrossRef
24.
Zurück zum Zitat P. J. Mason and S. H. Derbyshire, “Large eddy simulation of the stably-stratified atmospheric boundary layer,” Boundary-Layer Meteorol. 53, 117–162 (1990).ADSCrossRef P. J. Mason and S. H. Derbyshire, “Large eddy simulation of the stably-stratified atmospheric boundary layer,” Boundary-Layer Meteorol. 53, 117–162 (1990).ADSCrossRef
25.
Zurück zum Zitat E. Saiki, C.-H. Moeng, and P. Sullivan, “Large-eddy simulation of the stably stratified planetary boundary layer,” Boundary-Layer Meteorol. 95, 1–30 (2000).ADSCrossRef E. Saiki, C.-H. Moeng, and P. Sullivan, “Large-eddy simulation of the stably stratified planetary boundary layer,” Boundary-Layer Meteorol. 95, 1–30 (2000).ADSCrossRef
26.
Zurück zum Zitat J. Kleissl, M. B. Parlange, and C. Meneveau, “Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer,” J. Atmos. Sci. 61, 2296–2307 (2004).ADSCrossRef J. Kleissl, M. B. Parlange, and C. Meneveau, “Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer,” J. Atmos. Sci. 61, 2296–2307 (2004).ADSCrossRef
27.
Zurück zum Zitat E. Bou-Zeid, C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, “Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier,” J. Fluid Mech. 665, 480–515 (2010).ADSMATHCrossRef E. Bou-Zeid, C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, “Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier,” J. Fluid Mech. 665, 480–515 (2010).ADSMATHCrossRef
28.
Zurück zum Zitat T. Michioka, H. Takimoto, H. Ono, and A. Sato, “Reynolds-number dependence of gas dispersion over a wavy wall,” Boundary-Layer Meteorol. 164, 401–418 (2017).ADSCrossRef T. Michioka, H. Takimoto, H. Ono, and A. Sato, “Reynolds-number dependence of gas dispersion over a wavy wall,” Boundary-Layer Meteorol. 164, 401–418 (2017).ADSCrossRef
29.
Zurück zum Zitat M. R. Raupach, R. A. Antonia, and S. Rajagopalan, “Rough-wall turbulent boundary layers,” Appl. Mech. Rev. 44(1), 1–25 (1991).ADSCrossRef M. R. Raupach, R. A. Antonia, and S. Rajagopalan, “Rough-wall turbulent boundary layers,” Appl. Mech. Rev. 44(1), 1–25 (1991).ADSCrossRef
30.
Zurück zum Zitat C. L. V. Jayatillaka, “The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer,” Progr. Heat Mass Transf. 1, 193 (1969). C. L. V. Jayatillaka, “The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer,” Progr. Heat Mass Transf. 1, 193 (1969).
31.
Zurück zum Zitat C. Balaji, M. Hölling, and H. Herwig, “A temperature wall function for turbulent mixed convection from vertical, parallel plate channels,” Int. J. Therm. Sci. 47, 723–729 (2008).CrossRef C. Balaji, M. Hölling, and H. Herwig, “A temperature wall function for turbulent mixed convection from vertical, parallel plate channels,” Int. J. Therm. Sci. 47, 723–729 (2008).CrossRef
32.
Zurück zum Zitat T. Defraeye, B. Blocken, and J. Carmeliet, “CFD simulation of heat transfer at surfaces of bluff bodies in turbulent boundary layers: Evaluation of a forced-convective temperature wall function for mixed convection,” J. Wind Eng. Ind. Aerodyn. 104, 439–446 (2012).CrossRef T. Defraeye, B. Blocken, and J. Carmeliet, “CFD simulation of heat transfer at surfaces of bluff bodies in turbulent boundary layers: Evaluation of a forced-convective temperature wall function for mixed convection,” J. Wind Eng. Ind. Aerodyn. 104, 439–446 (2012).CrossRef
33.
Zurück zum Zitat V. B. L. Boppana, Z.-T. Xie, and I. P. Castro, “Thermal stratification effects on flow over a generic urban canopy,” Boundary-Layer Meteorol. 153, 141–162 (2014).ADSCrossRef V. B. L. Boppana, Z.-T. Xie, and I. P. Castro, “Thermal stratification effects on flow over a generic urban canopy,” Boundary-Layer Meteorol. 153, 141–162 (2014).ADSCrossRef
34.
Zurück zum Zitat J. Fröhlich and D. von Terzi, “Hybrid LES/RANS methods for the simulation of turbulent flows,” Progr. Aerosp. Sci. 44, 349–377 (2008).ADSCrossRef J. Fröhlich and D. von Terzi, “Hybrid LES/RANS methods for the simulation of turbulent flows,” Progr. Aerosp. Sci. 44, 349–377 (2008).ADSCrossRef
35.
Zurück zum Zitat J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy 138(1), 257–289 (2017).CrossRef J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy 138(1), 257–289 (2017).CrossRef
36.
Zurück zum Zitat M. Shur, P. R. Spalart, M. Strelets, and A. A. Travin, “Rapid and accurate switch from RANS to LES in boundary layers using an overlap region,” Flow Turbul. Combust. 86(2), 179–206 (2011).MATHCrossRef M. Shur, P. R. Spalart, M. Strelets, and A. A. Travin, “Rapid and accurate switch from RANS to LES in boundary layers using an overlap region,” Flow Turbul. Combust. 86(2), 179–206 (2011).MATHCrossRef
37.
Zurück zum Zitat M. Labois and D. Lakehal, “Very-large eddy simulation (V-LES) of the flow across a tube bundle,” Nucl. Eng. Des. 241(6), 2075–2085 (2011).CrossRef M. Labois and D. Lakehal, “Very-large eddy simulation (V-LES) of the flow across a tube bundle,” Nucl. Eng. Des. 241(6), 2075–2085 (2011).CrossRef
38.
Zurück zum Zitat C. Speziale, “Turbulence modeling for time-dependent RANS and VLES: a review,” AIAA J. 36(2), 173–184 (1998).ADSMATHCrossRef C. Speziale, “Turbulence modeling for time-dependent RANS and VLES: a review,” AIAA J. 36(2), 173–184 (1998).ADSMATHCrossRef
39.
Zurück zum Zitat S. T. Johansen, J. Wu, and W. Shyy, “Filter-based unsteady RANS computations,” Int. J. Heat Fluid Flow 25(1), 10–21 (2004).CrossRef S. T. Johansen, J. Wu, and W. Shyy, “Filter-based unsteady RANS computations,” Int. J. Heat Fluid Flow 25(1), 10–21 (2004).CrossRef
40.
41.
Zurück zum Zitat C. J. Greenshields, OpenFOAM: The Open Source CFD Toolbox, User Guide, Version 4.0. (OpenFOAM Foundation Ltd., London, 2016). C. J. Greenshields, OpenFOAM: The Open Source CFD Toolbox, User Guide, Version 4.0. (OpenFOAM Foundation Ltd., London, 2016).
42.
Zurück zum Zitat E. R. van Driest, “On turbulent flow near a wall,” J. Aeronaut. Sci. 23(11), 1007–1011 (1956).MATHCrossRef E. R. van Driest, “On turbulent flow near a wall,” J. Aeronaut. Sci. 23(11), 1007–1011 (1956).MATHCrossRef
43.
Zurück zum Zitat M. Ricci, L. Patruno, and S. de Miranda, “Wind loads and structural response: Benchmarking LES on a low-rise building,” Eng. Struct. 144, 26–42 (2017).CrossRef M. Ricci, L. Patruno, and S. de Miranda, “Wind loads and structural response: Benchmarking LES on a low-rise building,” Eng. Struct. 144, 26–42 (2017).CrossRef
44.
Zurück zum Zitat Y. Ohya, “Wind-tunnel study of atmospheric stable boundary layers over a rough surface,” Boundary-Layer Meteorol. 98(1), 57–82 (2001).ADSCrossRef Y. Ohya, “Wind-tunnel study of atmospheric stable boundary layers over a rough surface,” Boundary-Layer Meteorol. 98(1), 57–82 (2001).ADSCrossRef
45.
Zurück zum Zitat B. Vreman, B. Geurts, and H. Kuerten, “Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer,” Int. J. Numer. Meth. Fluids 22(4), 297–312 (1996).MATHCrossRef B. Vreman, B. Geurts, and H. Kuerten, “Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer,” Int. J. Numer. Meth. Fluids 22(4), 297–312 (1996).MATHCrossRef
46.
Zurück zum Zitat P. Moin, “Advances in large eddy simulation methodology for complex flows,” Int. J. Heat Fluid Flow 23, 710–720 (2002).CrossRef P. Moin, “Advances in large eddy simulation methodology for complex flows,” Int. J. Heat Fluid Flow 23, 710–720 (2002).CrossRef
47.
Zurück zum Zitat P. Sagaut, Large Eddy Simulation for Incompressible Flows: an Introduction (Springer, Leipzig, 2006).MATH P. Sagaut, Large Eddy Simulation for Incompressible Flows: an Introduction (Springer, Leipzig, 2006).MATH
48.
Zurück zum Zitat N. A. Adams, S. Hickel, T. Kempe, and J. A. Domaradzki, “On the relation between subgrid-scale modeling and numerical discretization in large-eddy simulation,” in: Complex Effects in Large Eddy Simulations, Ed. by S. C. Kassinos, C. A. Langer, G. Iaccarino, and P. Moin (Springer, Berlin, 2007), pp. 15–27.MATH N. A. Adams, S. Hickel, T. Kempe, and J. A. Domaradzki, “On the relation between subgrid-scale modeling and numerical discretization in large-eddy simulation,” in: Complex Effects in Large Eddy Simulations, Ed. by S. C. Kassinos, C. A. Langer, G. Iaccarino, and P. Moin (Springer, Berlin, 2007), pp. 15–27.MATH
49.
Zurück zum Zitat M. Kornhaas, D. C. Sternel, and M. Schafer, “Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization,” in: Quality and Reliability of Large-Eddy Simulations, Ed. by J. Meyers, B. J. Geurts, and P. Sagaut (Springer, Berlin, 2008), pp. 119–130.MATH M. Kornhaas, D. C. Sternel, and M. Schafer, “Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization,” in: Quality and Reliability of Large-Eddy Simulations, Ed. by J. Meyers, B. J. Geurts, and P. Sagaut (Springer, Berlin, 2008), pp. 119–130.MATH
50.
Zurück zum Zitat D. Fauconnier, C. De Langhe, and E. Dick, “Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex,” J. Comput. Phys. 228, 8053–8084 (2009).ADSMathSciNetMATHCrossRef D. Fauconnier, C. De Langhe, and E. Dick, “Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex,” J. Comput. Phys. 228, 8053–8084 (2009).ADSMathSciNetMATHCrossRef
51.
Zurück zum Zitat M. Ahmadi-Baloutaki, R. Carriveau, and D. S.-K. Ting, “Effect of free-stream turbulence on flow characteristics over a transversely-grooved surface,” Exp. Therm. Fluid Sci. 51, 56–70 (2013).CrossRef M. Ahmadi-Baloutaki, R. Carriveau, and D. S.-K. Ting, “Effect of free-stream turbulence on flow characteristics over a transversely-grooved surface,” Exp. Therm. Fluid Sci. 51, 56–70 (2013).CrossRef
52.
Zurück zum Zitat J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, “Turbulence structure in the convective boundary layer,” J. Atmos. Sci. 33, 2152–2169 (1976).ADSCrossRef J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, “Turbulence structure in the convective boundary layer,” J. Atmos. Sci. 33, 2152–2169 (1976).ADSCrossRef
Metadaten
Titel
A Very Large Eddy Simulation Model Using a Reductionist Inlet Turbulence Generator and Wall Modeling for Stable Atmospheric Boundary Layers
verfasst von
M. Ahmadi-Baloutaki
A. A. Aliabadi
Publikationsdatum
01.05.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020026

Weitere Artikel der Ausgabe 3/2021

Fluid Dynamics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.