Skip to main content
Erschienen in: Fluid Dynamics 3/2021

01.05.2021

Two-Dimensional Numerical Study of the Pulsed Co-Flow Jet

verfasst von: Yu-Zhe Zhang, He-Yong Xu, Yu-Wei Chu, Yue Xu

Erschienen in: Fluid Dynamics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two-dimensional flow of the pulsed co-flow jet (CFJ) and the influence of the pulsed parameters on the lift and power consumption are investigated numerically. Firstly, the jet channel of traditional CFJ airfoil is improved. The stall margin is increased by 3° compared with the corresponding traditional CFJ airfoil, and the lift is increased, while the drag is reduced significantly. Then, the influence of the pulsed parameters, such as the pulse waveform, including sinusoidal and rectangular waves, the duty cycle, and the pulse frequency on the lift and power consumption are presented and analyzed in detail. It is concluded that, compared with the steady CFJ, the pulsed CFJ possesses much better ability in suppressing separation and can improve the lift characteristics significantly with limited cost of power consumption. For example, at an angle of attack of 20° flow separation occurs severely, when the steady CFJ is adopted; however, the airflow becomes fully attached on the upper airfoil, when the rectangular pulsed CFJ is employed. As a result, the lift corresponding to the rectangular wave is higher than that of the sinusoidal wave. The results also indicate that the lower duty cycle and pulse frequency can lead to the higher lift but with more power consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Jirásek, “A vortex generator model and its application to flow control,” AIAA 2004-4965 (2004). A. Jirásek, “A vortex generator model and its application to flow control,” AIAA 2004-4965 (2004).
2.
Zurück zum Zitat J. C. Lin, S. K. Robinson, and R. J. McGhee, “Separation control on high Reynolds number multi-element airfoils,” AIAA 92-2636 (1992). J. C. Lin, S. K. Robinson, and R. J. McGhee, “Separation control on high Reynolds number multi-element airfoils,” AIAA 92-2636 (1992).
3.
Zurück zum Zitat K. Yee, W. Joo, and D. H. Lee, “Aerodynamic performance analysis of a Gurney flap for rotorcraft application,” J. Aircraft 44(3), 1003–1014 (2007).CrossRef K. Yee, W. Joo, and D. H. Lee, “Aerodynamic performance analysis of a Gurney flap for rotorcraft application,” J. Aircraft 44(3), 1003–1014 (2007).CrossRef
4.
Zurück zum Zitat R. Myose, M. Papadakis, and I. Heron, “Gurney flap experiments on airfoils, wings, and reflection plane model,” J. Aircraft 35(2), 206–211 (1998).CrossRef R. Myose, M. Papadakis, and I. Heron, “Gurney flap experiments on airfoils, wings, and reflection plane model,” J. Aircraft 35(2), 206–211 (1998).CrossRef
5.
Zurück zum Zitat D. Jeffrey and X. Zhang, “Aerodynamics of Gurney flaps on a single-element high-lift wing,” J. Aircraft 37(2), 295–301 (2000).CrossRef D. Jeffrey and X. Zhang, “Aerodynamics of Gurney flaps on a single-element high-lift wing,” J. Aircraft 37(2), 295–301 (2000).CrossRef
6.
Zurück zum Zitat Ö. Savas and D. Coles, “Coherence measurements in synthetic turbulent boundary layers,” J. Fluid Mech, 160, 421–446 (1985).ADSCrossRef Ö. Savas and D. Coles, “Coherence measurements in synthetic turbulent boundary layers,” J. Fluid Mech, 160, 421–446 (1985).ADSCrossRef
7.
Zurück zum Zitat R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43(10), 2110–2116 (2005).ADSCrossRef R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43(10), 2110–2116 (2005).ADSCrossRef
8.
Zurück zum Zitat D. You and P. Moin, “Active control of flow separation over an airfoil using synthetic jets,” J. Fluids Structures 24(8), 1349–1357 (2008).ADSCrossRef D. You and P. Moin, “Active control of flow separation over an airfoil using synthetic jets,” J. Fluids Structures 24(8), 1349–1357 (2008).ADSCrossRef
9.
Zurück zum Zitat T. C. Corke and M. L. Post, “Overview of plasma flow control: concepts, optimization, and applications,” AIAA 2005-563 (2005). T. C. Corke and M. L. Post, “Overview of plasma flow control: concepts, optimization, and applications,” AIAA 2005-563 (2005).
10.
Zurück zum Zitat M. Wicks, F. O. Thomas, T. C. Corke, M. Patel, and A. B. Cain, “Mechanism of vorticity generation in plasma streamwise vortex generators,” AIAA J. 53(11), 3404-3413 (2015).ADSCrossRef M. Wicks, F. O. Thomas, T. C. Corke, M. Patel, and A. B. Cain, “Mechanism of vorticity generation in plasma streamwise vortex generators,” AIAA J. 53(11), 3404-3413 (2015).ADSCrossRef
11.
Zurück zum Zitat G. S. Jones and R. J. Englar, “Advances in pneumatic-controlled high-lift systems through pulsed blowing,” AIAA 2003-3411 (2003). G. S. Jones and R. J. Englar, “Advances in pneumatic-controlled high-lift systems through pulsed blowing,” AIAA 2003-3411 (2003).
12.
Zurück zum Zitat Y. Liu, L. N. Sankar, R. J. Englar, and K. Ahuja, “Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control wing airfoil,” AIAA 2001-0704 (2001). Y. Liu, L. N. Sankar, R. J. Englar, and K. Ahuja, “Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control wing airfoil,” AIAA 2001-0704 (2001).
13.
Zurück zum Zitat Y. Liu, L. N. Sankar, R. J. Englar, K. Ahuja, and R. Gaeta, “Computational evaluation of the steady and pulsed jet effects on the performance of a circulation control wing section,” AIAA 2004-56 (2004). Y. Liu, L. N. Sankar, R. J. Englar, K. Ahuja, and R. Gaeta, “Computational evaluation of the steady and pulsed jet effects on the performance of a circulation control wing section,” AIAA 2004-56 (2004).
14.
Zurück zum Zitat G. C. Zha and C. Paxton, “A novel airfoil circulation augment flow control method using co-flow jet,” AIAA 2004-2208 (2004). G. C. Zha and C. Paxton, “A novel airfoil circulation augment flow control method using co-flow jet,” AIAA 2004-2208 (2004).
15.
Zurück zum Zitat B. P. E. Dano, D. Kirk, and G. C. Zha, “Experimental investigation of jet mixing of a co-flow jet airfoil,” AIAA 2010-4421 (2010). B. P. E. Dano, D. Kirk, and G. C. Zha, “Experimental investigation of jet mixing of a co-flow jet airfoil,” AIAA 2010-4421 (2010).
16.
Zurück zum Zitat G. C. Zha, B. F. Carroll, C. D. Paxton, C. A. Conley, and A. Wells, “High performance airfoil using co-flow jet flow control,” AIAA 2005-1260 (2005). G. C. Zha, B. F. Carroll, C. D. Paxton, C. A. Conley, and A. Wells, “High performance airfoil using co-flow jet flow control,” AIAA 2005-1260 (2005).
17.
Zurück zum Zitat Y. C. Yang and G. C. Zha, “Super lift coefficient of cylinder using co-flow jet active flow control,” AIAA 2018-0329 (2018). Y. C. Yang and G. C. Zha, “Super lift coefficient of cylinder using co-flow jet active flow control,” AIAA 2018-0329 (2018).
18.
Zurück zum Zitat J. H. Zhang, K. W. Xu, Y. C. Yang, Y. Ren, P. Patel, and G. C. Zha, “Aircraft control surfaces using co-flow jet active flow control airfoil,” AIAA 2018-3067 (2018). J. H. Zhang, K. W. Xu, Y. C. Yang, Y. Ren, P. Patel, and G. C. Zha, “Aircraft control surfaces using co-flow jet active flow control airfoil,” AIAA 2018-3067 (2018).
19.
Zurück zum Zitat G. C. Zha, W. Gao, C. D. Paxton, and A. Palewicz, “Numerical investigations of co-flow jet airfoil with and without injection,” AIAA 2006-1061 (2006). G. C. Zha, W. Gao, C. D. Paxton, and A. Palewicz, “Numerical investigations of co-flow jet airfoil with and without injection,” AIAA 2006-1061 (2006).
20.
Zurück zum Zitat G. C. Zha and W. Gao, “Analysis of jet effects on co-flow jet airfoil performance with integrated propulsion system,” AIAA 2006-0102 (2006). G. C. Zha and W. Gao, “Analysis of jet effects on co-flow jet airfoil performance with integrated propulsion system,” AIAA 2006-0102 (2006).
21.
Zurück zum Zitat H. Mitsudharmadi and Y. Cui, “Implementation of co-flow jet concept on low Reynolds number airfoil,” AIAA 2010-4717 (2010). H. Mitsudharmadi and Y. Cui, “Implementation of co-flow jet concept on low Reynolds number airfoil,” AIAA 2010-4717 (2010).
22.
Zurück zum Zitat X. D. Yang, W. R. Jiang, and S. L. Zhang, “Analysis of co-flow jet effect on dynamic stall characteristics applying to rotor airfoils”, IOP Conf. Ser.: Mater. Sci. Eng. 491, 012010 (2019). X. D. Yang, W. R. Jiang, and S. L. Zhang, “Analysis of co-flow jet effect on dynamic stall characteristics applying to rotor airfoils”, IOP Conf. Ser.: Mater. Sci. Eng. 491, 012010 (2019).
23.
Zurück zum Zitat H. Y. Xu, C. L. Qiao, and Z. Y. Ye, “Dynamic stall control on the wind turbine airfoil via a co-flow jet,” Energies 9(6), 1–25 (2016). H. Y. Xu, C. L. Qiao, and Z. Y. Ye, “Dynamic stall control on the wind turbine airfoil via a co-flow jet,” Energies 9(6), 1–25 (2016).
24.
Zurück zum Zitat H. Y. Xu, S. L. Xing, and Z. Y. Ye, “Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept,” J. Renew. Sustain. Ener. 7(2), 1–20 (2015). H. Y. Xu, S. L. Xing, and Z. Y. Ye, “Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept,” J. Renew. Sustain. Ener. 7(2), 1–20 (2015).
25.
Zurück zum Zitat K. W. Xu, J. H. Zhang, and G. C. Zha, “Drag minimization of co-flow jet control surfaces at cruise conditions,” AIAA 2019-1848 (2019). K. W. Xu, J. H. Zhang, and G. C. Zha, “Drag minimization of co-flow jet control surfaces at cruise conditions,” AIAA 2019-1848 (2019).
26.
Zurück zum Zitat ANSYS. ANSYS® Fluent Theory Guide, release 15.0 (ANSYS Inc., 2012). ANSYS. ANSYS® Fluent Theory Guide, release 15.0 (ANSYS Inc., 2012).
27.
Zurück zum Zitat P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AlAA-92-0439 (1992). P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AlAA-92-0439 (1992).
28.
Zurück zum Zitat N. K. Burgess, R. S. Glasby, J. T. Erwin, D. L. Stefanski, and S. R. Allmaras, “Finite-element solutions to the Reynolds averaged Navier-Stokes equations using a Spalart-Allmaras turbulence model,” AIAA 2017-1224 (2017). N. K. Burgess, R. S. Glasby, J. T. Erwin, D. L. Stefanski, and S. R. Allmaras, “Finite-element solutions to the Reynolds averaged Navier-Stokes equations using a Spalart-Allmaras turbulence model,” AIAA 2017-1224 (2017).
29.
Zurück zum Zitat ANSYS. ANSYS® Fluent Customization Manual, release 15.0 (ANSYS Inc., 2012). ANSYS. ANSYS® Fluent Customization Manual, release 15.0 (ANSYS Inc., 2012).
30.
Zurück zum Zitat Y. C. Yang, M. Fernandez, and G. C. Zha, “Improved delayed detached eddy simulation of super-lift flow of co-flow jet airfoil,” AIAA 2018-0314 (2018). Y. C. Yang, M. Fernandez, and G. C. Zha, “Improved delayed detached eddy simulation of super-lift flow of co-flow jet airfoil,” AIAA 2018-0314 (2018).
31.
Zurück zum Zitat C. L. Ladson, “Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section,” NASA TM 4074 (1988). C. L. Ladson, “Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section,” NASA TM 4074 (1988).
Metadaten
Titel
Two-Dimensional Numerical Study of the Pulsed Co-Flow Jet
verfasst von
Yu-Zhe Zhang
He-Yong Xu
Yu-Wei Chu
Yue Xu
Publikationsdatum
01.05.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821030137

Weitere Artikel der Ausgabe 3/2021

Fluid Dynamics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.