Skip to main content
Erschienen in: Fluid Dynamics 3/2021

01.05.2021

Evolution of the Flow Structure in the Gap and Near Wake of Two Tandem Cylinders in the AG Regime

verfasst von: Xiangjun Shan, Fangjin Sun

Erschienen in: Fluid Dynamics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A high-order discontinuous Galerkin method is employed to study the evolution of the flow structure in the gap and near wake of two tandem cylinders in the alternating in the gap (AG) regime. The transient characteristics of the flow, vorticity, and pressure fields, the transient circumferential pressure distribution, and the streamwise velocity along the centerline of the wake are studied under a Reynolds number of 200 and a pitch ratio of 2.3. The results show that the gap-flow occurs between the two tandem cylinders in the AG regime, and the gap-flow interacts with quasistatic vortices in the gap to cause unilateral or bilateral reattachment of the separated shear layer. In addition, under the influence of the gap-flow, a near-wake vortex is generated behind the downstream cylinder, which significantly affects the length of the recirculation bubble. Finally, the physical mechanism of reattachment of the shear layer and the generation of gap-flow in the AG regime are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Zdravkovich, “REVIEW—Review of Flow Interference Between Two Circular Cylinders in Various Arrangements,” ASME Transactions Journal of Fluids Engineering 99, 618–633 (1977).ADSCrossRef M. Zdravkovich, “REVIEW—Review of Flow Interference Between Two Circular Cylinders in Various Arrangements,” ASME Transactions Journal of Fluids Engineering 99, 618–633 (1977).ADSCrossRef
2.
Zurück zum Zitat D. Sumner, “Two circular cylinders in cross-flow: A review,” J. Fluids Structures 26(6), 849–899 (2010).ADSCrossRef D. Sumner, “Two circular cylinders in cross-flow: A review,” J. Fluids Structures 26(6), 849–899 (2010).ADSCrossRef
3.
Zurück zum Zitat Y. Zhou and M. M. Alam, “Wake of two interacting circular cylinders: A review,” Int. J. Heat Fluid Flow 62, 510–537 (2016).CrossRef Y. Zhou and M. M. Alam, “Wake of two interacting circular cylinders: A review,” Int. J. Heat Fluid Flow 62, 510–537 (2016).CrossRef
4.
Zurück zum Zitat M. M. Zdravkovich, “The effects of interference between circular cylinders in cross flow,” J. Fluids Structures 1(2), 239–261 (1987).ADSCrossRef M. M. Zdravkovich, “The effects of interference between circular cylinders in cross flow,” J. Fluids Structures 1(2), 239–261 (1987).ADSCrossRef
5.
Zurück zum Zitat B. S. Carmo, J. R. Meneghini, and S. J. Sherwin, “Secondary instabilities in the flow around two circular cylinders in tandem,” J. Fluid. Mech. 644, 395–431 (2010).ADSMATHCrossRef B. S. Carmo, J. R. Meneghini, and S. J. Sherwin, “Secondary instabilities in the flow around two circular cylinders in tandem,” J. Fluid. Mech. 644, 395–431 (2010).ADSMATHCrossRef
6.
Zurück zum Zitat G. Xu and Y. Zhou, “Strouhal numbers in the wake of two inline cylinders,” Exp. Fluids. 37(2), 248–256 (2004).CrossRef G. Xu and Y. Zhou, “Strouhal numbers in the wake of two inline cylinders,” Exp. Fluids. 37(2), 248–256 (2004).CrossRef
7.
Zurück zum Zitat T. Igarashi, “Characteristics of the flow around two circular cylinders arranged in tandem (1st report),” Bull. Japan. Soc. Mech. Eng. 24(188), 323–331 (1981). T. Igarashi, “Characteristics of the flow around two circular cylinders arranged in tandem (1st report),” Bull. Japan. Soc. Mech. Eng. 24(188), 323–331 (1981).
8.
Zurück zum Zitat R. Wang, H. B. Zhu, Y. Bao, D. Zhou, H. Ping, Z. L. Han, and H. Xu, “Modification of three-dimensional instability in the planar shear flow around two circular cylinders in tandem,” Phys. Fluids 31(10), 15 (2019). R. Wang, H. B. Zhu, Y. Bao, D. Zhou, H. Ping, Z. L. Han, and H. Xu, “Modification of three-dimensional instability in the planar shear flow around two circular cylinders in tandem,” Phys. Fluids 31(10), 15 (2019).
9.
Zurück zum Zitat L. J. Wang, M. M. Alam, and Y. Zhou, “Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics,” J. Fluid. Mech. 836, 5–42 (2018).ADSCrossRef L. J. Wang, M. M. Alam, and Y. Zhou, “Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics,” J. Fluid. Mech. 836, 5–42 (2018).ADSCrossRef
10.
Zurück zum Zitat W. C. Yang and M. A. Stremler, “Critical spacing of stationary tandem circular cylinders at Re approximate to 100,” J. Fluids Structures 89, 49–60 (2019).ADSCrossRef W. C. Yang and M. A. Stremler, “Critical spacing of stationary tandem circular cylinders at Re approximate to 100,” J. Fluids Structures 89, 49–60 (2019).ADSCrossRef
11.
Zurück zum Zitat S. Mittal, V. Kumar, and A. Raghuvanshi, “Unsteady incompressible flows past two cylinders in tandem and staggered arrangements,” Int. J. Numer. Meth. Fluids 25, 1315–1344 (1997).MATHCrossRef S. Mittal, V. Kumar, and A. Raghuvanshi, “Unsteady incompressible flows past two cylinders in tandem and staggered arrangements,” Int. J. Numer. Meth. Fluids 25, 1315–1344 (1997).MATHCrossRef
12.
Zurück zum Zitat J. R. Meneghini, F. Saltara, C. L. R. Siqueira, and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Structures 15(2), 327–350 (2001).ADSCrossRef J. R. Meneghini, F. Saltara, C. L. R. Siqueira, and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Structures 15(2), 327–350 (2001).ADSCrossRef
13.
Zurück zum Zitat W. Zhang, H. S. Dou, Z. C. Zhu, and Y. Li, “Unsteady characteristics of low-Re flow past two tandem cylinders,” Theor. Comput. Fluid Dyn. 32(4), 475–493 (2018).MathSciNetCrossRef W. Zhang, H. S. Dou, Z. C. Zhu, and Y. Li, “Unsteady characteristics of low-Re flow past two tandem cylinders,” Theor. Comput. Fluid Dyn. 32(4), 475–493 (2018).MathSciNetCrossRef
14.
Zurück zum Zitat A. R. Dwivedi and A. K. Dhiman, “Flow and heat transfer analysis around tandem cylinders: critical gap ratio and thermal cross-buoyancy,” J. Braz. Soc. Mech. Sci. Eng. 41(11), 25 (2019).CrossRef A. R. Dwivedi and A. K. Dhiman, “Flow and heat transfer analysis around tandem cylinders: critical gap ratio and thermal cross-buoyancy,” J. Braz. Soc. Mech. Sci. Eng. 41(11), 25 (2019).CrossRef
15.
Zurück zum Zitat G. Schewe and M. Jacobs, “Experiments on the Flow around two tandem circular cylinders from sub- up to transcritical Reynolds numbers,” J. Fluids Structures 88, 148–166 (2019).ADSCrossRef G. Schewe and M. Jacobs, “Experiments on the Flow around two tandem circular cylinders from sub- up to transcritical Reynolds numbers,” J. Fluids Structures 88, 148–166 (2019).ADSCrossRef
16.
Zurück zum Zitat T. Kitagawa and H. Ohta, “Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number,” J. Fluids Structures 24(5), 680–699 (2008).ADSCrossRef T. Kitagawa and H. Ohta, “Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number,” J. Fluids Structures 24(5), 680–699 (2008).ADSCrossRef
17.
Zurück zum Zitat L. Ljungkrona and B. Sunden, “Flow visualization and surface pressure measurement on two tubes in an inline arrangement,” Exp. Therm. Fluid. Sci. 6(1), 15–27 (1993).CrossRef L. Ljungkrona and B. Sunden, “Flow visualization and surface pressure measurement on two tubes in an inline arrangement,” Exp. Therm. Fluid. Sci. 6(1), 15–27 (1993).CrossRef
18.
Zurück zum Zitat F. Zafar and M. M. Alam, “A low Reynolds number flow and heat transfer topology of a cylinder in a wake,” Phys. Fluids 30(8), 18 (2018).CrossRef F. Zafar and M. M. Alam, “A low Reynolds number flow and heat transfer topology of a cylinder in a wake,” Phys. Fluids 30(8), 18 (2018).CrossRef
19.
20.
Zurück zum Zitat F. C. Massa, G. Noventa, M. Lorini, F. Bassi, and A. Ghidoni, “High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations,” Computers Fluids 162, 55–71 (2018).MathSciNetMATHCrossRef F. C. Massa, G. Noventa, M. Lorini, F. Bassi, and A. Ghidoni, “High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations,” Computers Fluids 162, 55–71 (2018).MathSciNetMATHCrossRef
21.
Zurück zum Zitat M. Paipuri, S. Fernández-Méndez, and C. Tiago, “Comparison of high-order continuous and hybridizable discontinuous Galerkin methods for incompressible fluid flow problems,” Mathematics and Computers in Simulation 153, 35–58 (2018).MathSciNetMATHCrossRef M. Paipuri, S. Fernández-Méndez, and C. Tiago, “Comparison of high-order continuous and hybridizable discontinuous Galerkin methods for incompressible fluid flow problems,” Mathematics and Computers in Simulation 153, 35–58 (2018).MathSciNetMATHCrossRef
22.
Zurück zum Zitat H. Ding, C. Shu, K. S. Yeo, and D. Xu, “Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods,” Int. J. Numer. Meth. Fl. 53(2), 305–332 (2007).MATHCrossRef H. Ding, C. Shu, K. S. Yeo, and D. Xu, “Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods,” Int. J. Numer. Meth. Fl. 53(2), 305–332 (2007).MATHCrossRef
23.
Zurück zum Zitat B. G. Dehkordi, H. S. Moghaddam, and H.H. Jafari, “Numerical simulation of flow over two circular cylinders in tandem arrangement,” J. Hydrodyn. 23(1), 114–126 (2011).ADSCrossRef B. G. Dehkordi, H. S. Moghaddam, and H.H. Jafari, “Numerical simulation of flow over two circular cylinders in tandem arrangement,” J. Hydrodyn. 23(1), 114–126 (2011).ADSCrossRef
24.
Zurück zum Zitat M. M. Alam, “Lift forces induced by phase lag between the vortex sheddings from two tandem bluff bodies,” J. Fluids Structures 65, 217–237 (2016).ADSCrossRef M. M. Alam, “Lift forces induced by phase lag between the vortex sheddings from two tandem bluff bodies,” J. Fluids Structures 65, 217–237 (2016).ADSCrossRef
25.
Zurück zum Zitat A. Slaouti and P. K. Stansby, “Flow around two circular cylinders by the random-vortex method,” J. Fluids Structures 6(6), 641–670 (1992).ADSCrossRef A. Slaouti and P. K. Stansby, “Flow around two circular cylinders by the random-vortex method,” J. Fluids Structures 6(6), 641–670 (1992).ADSCrossRef
26.
Zurück zum Zitat B. S. Carmo and J. R. Meneghini, “Numerical investigation of the flow around two circular cylinders in tandem,” J. Fluids Structures 22(6–7), 979–988 (2006). B. S. Carmo and J. R. Meneghini, “Numerical investigation of the flow around two circular cylinders in tandem,” J. Fluids Structures 22(6–7), 979–988 (2006).
27.
Zurück zum Zitat G. E. Karniadakis, M. Israeli, and S. A. Orszag, “High-order splitting methods for the incompressible Navier–Stokes equations,” J. Comput. Phys. 97(2), 414–443 (1991).ADSMathSciNetMATHCrossRef G. E. Karniadakis, M. Israeli, and S. A. Orszag, “High-order splitting methods for the incompressible Navier–Stokes equations,” J. Comput. Phys. 97(2), 414–443 (1991).ADSMathSciNetMATHCrossRef
28.
Zurück zum Zitat H. Y. Jiang, L. Cheng, S. Draper, H. W. An, and F. F. Tong, “Three-dimensional direct numerical simulation of wake transitions of a circular cylinder,” J. Fluid. Mech. 801, 353–391 (2016).ADSMathSciNetCrossRef H. Y. Jiang, L. Cheng, S. Draper, H. W. An, and F. F. Tong, “Three-dimensional direct numerical simulation of wake transitions of a circular cylinder,” J. Fluid. Mech. 801, 353–391 (2016).ADSMathSciNetCrossRef
29.
Zurück zum Zitat T. Toulorge and W. Desmet, “Optimal Runge–Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems,” J. Comput. Phys. 231, 2067–2091 (2012).ADSMathSciNetMATHCrossRef T. Toulorge and W. Desmet, “Optimal Runge–Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems,” J. Comput. Phys. 231, 2067–2091 (2012).ADSMathSciNetMATHCrossRef
30.
Zurück zum Zitat N. Kroll, C. Hirsch, F. Bassi, C. Johnston, and K. Hillewaert, IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach (Springer, New York, 2015).MATHCrossRef N. Kroll, C. Hirsch, F. Bassi, C. Johnston, and K. Hillewaert, IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach (Springer, New York, 2015).MATHCrossRef
31.
Zurück zum Zitat W. J. Gordon and C. A. Hall, “Transfinite element methods: Blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21(2), 109–129 (1973).MathSciNetMATHCrossRef W. J. Gordon and C. A. Hall, “Transfinite element methods: Blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21(2), 109–129 (1973).MathSciNetMATHCrossRef
32.
Zurück zum Zitat M. Darvishyadegari and R. Hassanzadeh, “Heat and fluid flow around two co-rotating cylinders in tandem arrangement,” Int. J. Therm. Sci. 135, 206–220 (2019).CrossRef M. Darvishyadegari and R. Hassanzadeh, “Heat and fluid flow around two co-rotating cylinders in tandem arrangement,” Int. J. Therm. Sci. 135, 206–220 (2019).CrossRef
33.
Zurück zum Zitat N. Mahir and Z. Altac, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow 29(5), 1309–1318 (2008).CrossRef N. Mahir and Z. Altac, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow 29(5), 1309–1318 (2008).CrossRef
34.
Zurück zum Zitat Y. Koda and F.S. Lien, “Aerodynamic effects of the early three-dimensional instabilities in the flow over one and two circular cylinders in tandem predicted by the lattice Boltzmann method,” Computers Fluids 74, 32–43 (2013).MathSciNetMATHCrossRef Y. Koda and F.S. Lien, “Aerodynamic effects of the early three-dimensional instabilities in the flow over one and two circular cylinders in tandem predicted by the lattice Boltzmann method,” Computers Fluids 74, 32–43 (2013).MathSciNetMATHCrossRef
35.
Zurück zum Zitat G. V. Papaioannou, D. K. P. Yue, M. S. Triantafyllou, and G. E. Karniadakis, “Three-dimensionality effects in flow around two tandem cylinders,” J. Fluid. Mech. 558, 387–413 (2006).ADSMATHCrossRef G. V. Papaioannou, D. K. P. Yue, M. S. Triantafyllou, and G. E. Karniadakis, “Three-dimensionality effects in flow around two tandem cylinders,” J. Fluid. Mech. 558, 387–413 (2006).ADSMATHCrossRef
36.
Zurück zum Zitat M. M. Liu, “The predominant frequency for viscous flow past two tandem circular cylinders of different diameters at low Reynolds number,” Proc. Inst. Mech. Eng. Part M- J. Eng. Marit. Environ. 1–13 (2019). M. M. Liu, “The predominant frequency for viscous flow past two tandem circular cylinders of different diameters at low Reynolds number,” Proc. Inst. Mech. Eng. Part M- J. Eng. Marit. Environ. 1–13 (2019).
37.
Zurück zum Zitat M. Shaaban and A. Mohany, “Flow-induced vibration of three unevenly spaced in-line cylinders in cross-flow,” J. Fluids Structures 76, 367–383 (2018).ADSCrossRef M. Shaaban and A. Mohany, “Flow-induced vibration of three unevenly spaced in-line cylinders in cross-flow,” J. Fluids Structures 76, 367–383 (2018).ADSCrossRef
38.
Zurück zum Zitat H. C. Vu, J. Ahn, and J. H. Hwang, “Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers,” KSCE J. Civ. Eng. 20(4), 1594–1604 (2016).CrossRef H. C. Vu, J. Ahn, and J. H. Hwang, “Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers,” KSCE J. Civ. Eng. 20(4), 1594–1604 (2016).CrossRef
39.
Zurück zum Zitat S. Singha and K. P. Sinhamahapatra, “High-resolution numerical simulation of low Reynolds number incompressible flow about two cylinders in tandem,” J. Fluids Eng.-Trans. ASME 132(1), 10 (2010). S. Singha and K. P. Sinhamahapatra, “High-resolution numerical simulation of low Reynolds number incompressible flow about two cylinders in tandem,” J. Fluids Eng.-Trans. ASME 132(1), 10 (2010).
40.
Zurück zum Zitat C. Norberg, “Fluctuating lift on a circular cylinder: review and new measurements,” J. Fluids Structures 17(1), 57–96 (2003).ADSCrossRef C. Norberg, “Fluctuating lift on a circular cylinder: review and new measurements,” J. Fluids Structures 17(1), 57–96 (2003).ADSCrossRef
41.
Zurück zum Zitat C. H. K. Williamson, “2-D and 3-D aspects of the wake of a cylinder and their relation to wake computations,” Vortex Dynamics and Vortex Methods. 28, 719–751 (1991). C. H. K. Williamson, “2-D and 3-D aspects of the wake of a cylinder and their relation to wake computations,” Vortex Dynamics and Vortex Methods. 28, 719–751 (1991).
42.
Zurück zum Zitat A. Roshko,"On the drag and shedding frequency of two-dimensional bluff bodies," Ed. by National Advisory Committee for Aeronautics (NACA) Washington: United States, 1954. A. Roshko,"On the drag and shedding frequency of two-dimensional bluff bodies," Ed. by National Advisory Committee for Aeronautics (NACA) Washington: United States, 1954.
43.
Zurück zum Zitat J. C. Lin, Y. Yang, and D. Rockwell, “Flow past two cylinders in tandem: instantaneous and averaged flow structure,” J. Fluids Structures 16(8), 1059–1071 (2002).ADSCrossRef J. C. Lin, Y. Yang, and D. Rockwell, “Flow past two cylinders in tandem: instantaneous and averaged flow structure,” J. Fluids Structures 16(8), 1059–1071 (2002).ADSCrossRef
44.
Zurück zum Zitat T. Igarashi and K. Suzuki, “Characteristics of the flow around three circular zylinders,” JSME International Journal 24(233), 2397–2404 (1984).CrossRef T. Igarashi and K. Suzuki, “Characteristics of the flow around three circular zylinders,” JSME International Journal 24(233), 2397–2404 (1984).CrossRef
45.
Zurück zum Zitat M. M. Alam, M. Moriya, K. Takai, and H. Sakamoto, “Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number,” J. Wind. Eng. Ind. Aerodyn. 91(1), 139–154 (2003).CrossRef M. M. Alam, M. Moriya, K. Takai, and H. Sakamoto, “Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number,” J. Wind. Eng. Ind. Aerodyn. 91(1), 139–154 (2003).CrossRef
46.
Zurück zum Zitat X. F. Hu, X. S. Zhang, and Y.X. You, “On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers,” Ocean. Eng. 189, 20 (2019).CrossRef X. F. Hu, X. S. Zhang, and Y.X. You, “On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers,” Ocean. Eng. 189, 20 (2019).CrossRef
47.
Zurück zum Zitat M. A. Prsic, M. C. Ong, B. Pettersen, and D. Myrhaug, “Large eddy simulations of flow around tandem circular cylinders in the vicinity of a plane wall,” J. Mar. Sci. Technol. 24(2), 338–358 (2019).CrossRef M. A. Prsic, M. C. Ong, B. Pettersen, and D. Myrhaug, “Large eddy simulations of flow around tandem circular cylinders in the vicinity of a plane wall,” J. Mar. Sci. Technol. 24(2), 338–358 (2019).CrossRef
Metadaten
Titel
Evolution of the Flow Structure in the Gap and Near Wake of Two Tandem Cylinders in the AG Regime
verfasst von
Xiangjun Shan
Fangjin Sun
Publikationsdatum
01.05.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821030095

Weitere Artikel der Ausgabe 3/2021

Fluid Dynamics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.