Skip to main content
Erschienen in: Fluid Dynamics 3/2021

01.05.2021

Numerical Investigation of Weak Planar Shock—Elliptical Light Gas Bubble Interaction in Shock and Reshock Accelerated Flow

verfasst von: Zhiwei Yang, Yuejin Zhu

Erschienen in: Fluid Dynamics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The computational results of the weak planar shock–elliptical light gas bubble interaction are presented. The influence of different light gases (helium and neon) on the interaction process is clarified using high-resolution computation schemes. It is found that the helium gas bubble is easier to be compressed than the neon gas bubble owing to its smaller density and the helium gas bubble can be split into two, upper and lower, parts by the inward air jet, which is not the case for the neon gas bubble. The area of the helium gas bubble decreases in the incident and reflected shock compression stages and increases in the expansion stages behind the shock waves. At the same time, the neon gas bubble area decreases in the four stages, which is mainly due to the fact that the average vorticity intensity increases, as the gas density decreases. Further, the factors affecting the vorticity evolution are also analyzed and it is revealed that the compression term has a relatively stronger influence on the vorticity evolution than the other two terms in the helium and neon gas bubbles, but in the expansion stage behind the incident shock the influence of viscosity is stronger than the baroclinic effect in the neon gas bubble.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. P. Maran, G. Sonneborn, C. S. J. Pun, P. Lundqvist, R. C. Iping, and T. R. Gull, “Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst,” Astrophys. J. 545, 390–398 (2000).ADSCrossRef S. P. Maran, G. Sonneborn, C. S. J. Pun, P. Lundqvist, R. C. Iping, and T. R. Gull, “Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst,” Astrophys. J. 545, 390–398 (2000).ADSCrossRef
2.
Zurück zum Zitat Y. Liang, Z. G. Zhai, X. S. Luo, and C. Y. Wen, “Interfacial instability at a heavy/light interface induced by rarefaction waves,” J. Fluid Mech. 885, A2 (2020).MathSciNetCrossRef Y. Liang, Z. G. Zhai, X. S. Luo, and C. Y. Wen, “Interfacial instability at a heavy/light interface induced by rarefaction waves,” J. Fluid Mech. 885, A2 (2020).MathSciNetCrossRef
3.
Zurück zum Zitat Z. H. Pan, K. P. Chen, J. Qi, P. G. Zhang, Y. J. Zhu, J. F. Pan, and M. Y. Gui, “The propagation characteristics of curved detonation wave: Experiments in helical channels,” Proc. Combust. Inst. 37, 3585–3592 (2019).CrossRef Z. H. Pan, K. P. Chen, J. Qi, P. G. Zhang, Y. J. Zhu, J. F. Pan, and M. Y. Gui, “The propagation characteristics of curved detonation wave: Experiments in helical channels,” Proc. Combust. Inst. 37, 3585–3592 (2019).CrossRef
4.
Zurück zum Zitat Z. H. Pan, J. Qi, J. F. Pan, P. G. Zhang, Y. J. Zhu, and M. Y. Gui, “Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures,” Combust. Flame 192, 1–9 (2018).CrossRef Z. H. Pan, J. Qi, J. F. Pan, P. G. Zhang, Y. J. Zhu, and M. Y. Gui, “Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures,” Combust. Flame 192, 1–9 (2018).CrossRef
5.
Zurück zum Zitat Y. J. Zhu, Z. H. Pan, P. G. Zhang, and J. F. Pan, “Stable detonation characteristics of premixed C2H4/O2 gas in narrow gaps,” Exp. Fluids 58(112), 1–6 (2017).ADSCrossRef Y. J. Zhu, Z. H. Pan, P. G. Zhang, and J. F. Pan, “Stable detonation characteristics of premixed C2H4/O2 gas in narrow gaps,” Exp. Fluids 58(112), 1–6 (2017).ADSCrossRef
6.
Zurück zum Zitat G. Layes and O. L. Metayer, “Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion,” Phys. Fluids 19, 042105 (2007).ADSCrossRef G. Layes and O. L. Metayer, “Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion,” Phys. Fluids 19, 042105 (2007).ADSCrossRef
7.
Zurück zum Zitat G. Layes, G. Jourdan, and L. Houas, “Experimental study on a plane shock wave accelerating a gas bubble,” Phys. Fluids 21, 074102 (2009).ADSCrossRef G. Layes, G. Jourdan, and L. Houas, “Experimental study on a plane shock wave accelerating a gas bubble,” Phys. Fluids 21, 074102 (2009).ADSCrossRef
8.
Zurück zum Zitat D. Ranjan, J. H. J. Niederhaus, J. G. Oakley, M. H. Anderson, R. Bonazza, and J. A. Greenough, “Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations,” Phys. Fluids 20, 036101 (2008).ADSCrossRef D. Ranjan, J. H. J. Niederhaus, J. G. Oakley, M. H. Anderson, R. Bonazza, and J. A. Greenough, “Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations,” Phys. Fluids 20, 036101 (2008).ADSCrossRef
9.
Zurück zum Zitat N. Haehn, C. Weber, J. Oakley, M. Anderson, D. Ranjan, and R. Bonazza, “Experimental study of the shock–bubble interaction with reshock,” Shock Waves 22(1), 47–56 (2012).ADSCrossRef N. Haehn, C. Weber, J. Oakley, M. Anderson, D. Ranjan, and R. Bonazza, “Experimental study of the shock–bubble interaction with reshock,” Shock Waves 22(1), 47–56 (2012).ADSCrossRef
10.
Zurück zum Zitat T. Si, Z. G. Zhai, J. M. Yang, and X. S. Luo, “Experimental investigation of reshocked spherical gas interfaces,” Phys. Fluids 24, 054101 (2012).ADSCrossRef T. Si, Z. G. Zhai, J. M. Yang, and X. S. Luo, “Experimental investigation of reshocked spherical gas interfaces,” Phys. Fluids 24, 054101 (2012).ADSCrossRef
11.
Zurück zum Zitat J. H. J. Niederhaus, J. A. Greenough, J. G. Oakley, D. Ranjan, M. H. Anderson, and R. Bonazza, “A computational parameter study for the three-dimensional shock-bubble interaction,” J. Fluid Mech. 594, 84–124 (2008).ADSCrossRef J. H. J. Niederhaus, J. A. Greenough, J. G. Oakley, D. Ranjan, M. H. Anderson, and R. Bonazza, “A computational parameter study for the three-dimensional shock-bubble interaction,” J. Fluid Mech. 594, 84–124 (2008).ADSCrossRef
12.
Zurück zum Zitat Y. J. Zhu, L. Yu, J. F. Pan, Z. H. Pan, and P. G. Zhang, “Jet formation of SF6 bubble induced by incident and reflected shock waves,” Phys. Fluids 29, 126105 (2017).ADSCrossRef Y. J. Zhu, L. Yu, J. F. Pan, Z. H. Pan, and P. G. Zhang, “Jet formation of SF6 bubble induced by incident and reflected shock waves,” Phys. Fluids 29, 126105 (2017).ADSCrossRef
13.
Zurück zum Zitat Y. J. Zhu, Z. W. Yang, Z. H. Pan, P. G. Zhang, and J. F. Pan, “Numerical investigation of shock-SF6 bubble interaction with different Mach numbers,” Computers Fluids 177, 78–86 (2018).MathSciNetCrossRef Y. J. Zhu, Z. W. Yang, Z. H. Pan, P. G. Zhang, and J. F. Pan, “Numerical investigation of shock-SF6 bubble interaction with different Mach numbers,” Computers Fluids 177, 78–86 (2018).MathSciNetCrossRef
14.
Zurück zum Zitat Y. J. Zhu, Z. W. Yang, K. H. Luo, J. F. Pan, and Z. H. Pan, “Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities,” Phys. Fluids 31, 056101 (2019).ADSCrossRef Y. J. Zhu, Z. W. Yang, K. H. Luo, J. F. Pan, and Z. H. Pan, “Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities,” Phys. Fluids 31, 056101 (2019).ADSCrossRef
15.
Zurück zum Zitat Y. J. Zhu, L. K. Gao, Z. W. Yang, “Sulfur hexafluoride bubble evolution in shock accelerated flow with a transverse density gradient,” Phys. Fluids 32, 026101 (2020).ADSCrossRef Y. J. Zhu, L. K. Gao, Z. W. Yang, “Sulfur hexafluoride bubble evolution in shock accelerated flow with a transverse density gradient,” Phys. Fluids 32, 026101 (2020).ADSCrossRef
16.
Zurück zum Zitat P. Y. Georgievskiy, V. A. Levin, and O. G. Sutyrin, “Interaction of a shock with elliptical gas bubbles,” Shock Waves 25, 357–369 (2015).ADSCrossRef P. Y. Georgievskiy, V. A. Levin, and O. G. Sutyrin, “Interaction of a shock with elliptical gas bubbles,” Shock Waves 25, 357–369 (2015).ADSCrossRef
17.
Zurück zum Zitat M. Wang, T. Si, and X. Luo, “Experimental study on the interaction of planar shock wave with polygonal helium cylinders,” Shock Waves 25, 347–355 (2015).ADSCrossRef M. Wang, T. Si, and X. Luo, “Experimental study on the interaction of planar shock wave with polygonal helium cylinders,” Shock Waves 25, 347–355 (2015).ADSCrossRef
18.
Zurück zum Zitat X. Luo, M. Wang, T. Si, and Z. Zhai, “On the interaction of a planar shock with an SF6 polygon,” J. Fluid Mech. 773, 366–394 (2015).ADSCrossRef X. Luo, M. Wang, T. Si, and Z. Zhai, “On the interaction of a planar shock with an SF6 polygon,” J. Fluid Mech. 773, 366–394 (2015).ADSCrossRef
19.
Zurück zum Zitat L. Zou, S. Liao, C. Liu, Y. Wang, and Z. Zhai, “Aspect ratio effect on shock-accelerated elliptic gas cylinders,” Phys. Fluids 28, 036101 (2016).ADSCrossRef L. Zou, S. Liao, C. Liu, Y. Wang, and Z. Zhai, “Aspect ratio effect on shock-accelerated elliptic gas cylinders,” Phys. Fluids 28, 036101 (2016).ADSCrossRef
20.
Zurück zum Zitat D. Igra and O. Igra, “Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases,” Phys. Fluids 30, 056104 (2018).ADSCrossRef D. Igra and O. Igra, “Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases,” Phys. Fluids 30, 056104 (2018).ADSCrossRef
21.
Zurück zum Zitat D. Igra and O. Igra, “Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation,” J. Fluid Mech. 889, A26 (2020).ADSMathSciNetCrossRef D. Igra and O. Igra, “Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation,” J. Fluid Mech. 889, A26 (2020).ADSMathSciNetCrossRef
22.
Zurück zum Zitat G. S. Jiang, and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126, 202–228 (1996).ADSMathSciNetCrossRef G. S. Jiang, and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126, 202–228 (1996).ADSMathSciNetCrossRef
Metadaten
Titel
Numerical Investigation of Weak Planar Shock—Elliptical Light Gas Bubble Interaction in Shock and Reshock Accelerated Flow
verfasst von
Zhiwei Yang
Yuejin Zhu
Publikationsdatum
01.05.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821030101

Weitere Artikel der Ausgabe 3/2021

Fluid Dynamics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.