Skip to main content
Erschienen in: Automatic Documentation and Mathematical Linguistics 1/2023

01.02.2023 | INFORMATION ANALYSIS

About Representation and Evaluation of the Scientific Data, Numerical and Non-Numerical Nature in the Properties of Materials Research

verfasst von: A. O. Erkimbaev, V. Yu. Zitserman, G. A. Kobzev, A. V. Kosinov

Erschienen in: Automatic Documentation and Mathematical Linguistics | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The paper considers issues in presenting and assessing the quality of scientific data in the materials science domain. Problems with numerical and non-numerical data of various types are presented using examples of data on the properties of reactor materials. Difficulties encountered in the description of nominal and ordinal data types in materials science are considered. A review of existing schemes for assessing data quality and their applicability in the considered examples of real data is carried out.
Literatur
1.
Zurück zum Zitat Zaidel’, A.N., Oshibki izmerenii fizicheskikh velichin (Measurement Errors of Physical Quantities), Moscow: Lan’, 2009, 3rd ed. Zaidel’, A.N., Oshibki izmerenii fizicheskikh velichin (Measurement Errors of Physical Quantities), Moscow: Lan’, 2009, 3rd ed.
2.
Zurück zum Zitat Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Univ. Sci. Books, Physics Teacher, 1981, 2nd ed. Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Univ. Sci. Books, Physics Teacher, 1981, 2nd ed.
6.
Zurück zum Zitat What is big data? Definition of big data, Oracle Cloud Infrastructure. https://​www.​oracle.​com/​cis/​big-data/​ what-is-big-data/. Cited November 6, 2022. What is big data? Definition of big data, Oracle Cloud Infrastructure. https://​www.​oracle.​com/​cis/​big-data/​ what-is-big-data/. Cited November 6, 2022.
10.
Zurück zum Zitat Bol’shakov, A.A. and Karimov, R.N., Metody obrabotki mnogomernykh dannykh i vremennykh ryadov. Uchebnoe posobie dlya vuzov (Methods for Processing Multidimensional Data and Time Series: Textbook for Universities), Moscow: Goryachaya Liniya-Telekom, 2015, 2nd ed. Bol’shakov, A.A. and Karimov, R.N., Metody obrabotki mnogomernykh dannykh i vremennykh ryadov. Uchebnoe posobie dlya vuzov (Methods for Processing Multidimensional Data and Time Series: Textbook for Universities), Moscow: Goryachaya Liniya-Telekom, 2015, 2nd ed.
14.
Zurück zum Zitat Categorical data: Machine learning, neural networks, artificial intelligence. https://​machinelearningm​astery.​ ru/understanding-feature-engineering-part-2-categorical-data-f54324193e63/. Cited November 11, 2022. Categorical data: Machine learning, neural networks, artificial intelligence. https://​machinelearningm​astery.​ ru/understanding-feature-engineering-part-2-categorical-data-f54324193e63/. Cited November 11, 2022.
15.
Zurück zum Zitat Sin’kov, D.V. and Vanichkin, A.D., Coding the categorical data for use in machine learning, Molodoi Uchenyi, 2020, no. 21, pp. 70–72. Sin’kov, D.V. and Vanichkin, A.D., Coding the categorical data for use in machine learning, Molodoi Uchenyi, 2020, no. 21, pp. 70–72.
22.
Zurück zum Zitat Fadahunsi, K.Ph., O’Connor, S., Akinlua, J.T., Wark, P.A., Gallagher, J., Carroll, Ch., Car, J., Majeed, A., and O’Donoghue, J., Information quality frameworks for digital health technologies: Systematic review, J. Med. Internet Res., 2021, vol. 23, no. 5, p. e23479. https://​doi.​org/​10.​2196/​23479 CrossRef Fadahunsi, K.Ph., O’Connor, S., Akinlua, J.T., Wark, P.A., Gallagher, J., Carroll, Ch., Car, J., Majeed, A., and O’Donoghue, J., Information quality frameworks for digital health technologies: Systematic review, J. Med. Internet Res., 2021, vol. 23, no. 5, p. e23479. https://​doi.​org/​10.​2196/​23479 CrossRef
23.
Zurück zum Zitat Trushin, Yu.V., Fizicheskie osnovy materialovedeniya. Uchebnoe posobie (Physical Foundations of Materials Science: Textbook), St. Petersburg: Izd-vo Akad. Univ., 2015. Trushin, Yu.V., Fizicheskie osnovy materialovedeniya. Uchebnoe posobie (Physical Foundations of Materials Science: Textbook), St. Petersburg: Izd-vo Akad. Univ., 2015.
24.
Zurück zum Zitat Ivannikov, V.P., Osnovy materialovedeniya. Konstruktsionnye materialy i tekhnologii. Uchebnoe posobie (Foundations of Materials Science: Structural Materials and Technologies), Moscow: Infra-Inzheneriya, 2022. Ivannikov, V.P., Osnovy materialovedeniya. Konstruktsionnye materialy i tekhnologii. Uchebnoe posobie (Foundations of Materials Science: Structural Materials and Technologies), Moscow: Infra-Inzheneriya, 2022.
25.
Zurück zum Zitat Abramovich, M.D., Radiatsionnoe materialovedenie na AES (Radiation Materials Science at Nuclear Power Stations), Moscow: Energoatomizdat, 1984. Abramovich, M.D., Radiatsionnoe materialovedenie na AES (Radiation Materials Science at Nuclear Power Stations), Moscow: Energoatomizdat, 1984.
27.
Zurück zum Zitat Makarov, E.I., Regularities of radiation creep of 08Kh18N10T steel irradiated to high neutron damaging doses at temperatures from 330 to 420°C, Cand. Sci. (Eng.) Dissertation, Ul’yanovsk, 2020. Makarov, E.I., Regularities of radiation creep of 08Kh18N10T steel irradiated to high neutron damaging doses at temperatures from 330 to 420°C, Cand. Sci. (Eng.) Dissertation, Ul’yanovsk, 2020.
28.
Zurück zum Zitat Neustroev, V.S., Low-temperature radiation damaging of austenitic steels irradiated in research and energy reactors, Doctoral (Eng.) Dissertation, Moscow, 2006. Neustroev, V.S., Low-temperature radiation damaging of austenitic steels irradiated in research and energy reactors, Doctoral (Eng.) Dissertation, Moscow, 2006.
29.
Zurück zum Zitat Elizarov, A.M., Lipachev, E.K., and Malakhal’tsev, M.A., Osnovy MathML. Predstavlenie matematicheskikh tekstov v Internet (Foundations of MathML: Representation of Mathematical Texts in Internet), Kazan: KMO, 2008. Elizarov, A.M., Lipachev, E.K., and Malakhal’tsev, M.A., Osnovy MathML. Predstavlenie matematicheskikh tekstov v Internet (Foundations of MathML: Representation of Mathematical Texts in Internet), Kazan: KMO, 2008.
30.
Zurück zum Zitat Chirico, R.D., Frenkel, M., Diky, V.V., Marsh, K.N., and Wilhoit, R.C., ThermoML—An XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 2. Uncertainties, J. Chem. Eng. Data, 2003, vol. 48, no. 5, pp. 1344–1359. https://​doi.​org/​10.​1021/​je034088i CrossRef Chirico, R.D., Frenkel, M., Diky, V.V., Marsh, K.N., and Wilhoit, R.C., ThermoML—An XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 2. Uncertainties, J. Chem. Eng. Data, 2003, vol. 48, no. 5, pp. 1344–1359. https://​doi.​org/​10.​1021/​je034088i CrossRef
Metadaten
Titel
About Representation and Evaluation of the Scientific Data, Numerical and Non-Numerical Nature in the Properties of Materials Research
verfasst von
A. O. Erkimbaev
V. Yu. Zitserman
G. A. Kobzev
A. V. Kosinov
Publikationsdatum
01.02.2023
Verlag
Pleiades Publishing
Erschienen in
Automatic Documentation and Mathematical Linguistics / Ausgabe 1/2023
Print ISSN: 0005-1055
Elektronische ISSN: 1934-8371
DOI
https://doi.org/10.3103/S0005105523010077

Weitere Artikel der Ausgabe 1/2023

Automatic Documentation and Mathematical Linguistics 1/2023 Zur Ausgabe