Skip to main content
Erschienen in: Automatic Documentation and Mathematical Linguistics 1/2023

01.02.2023 | INFORMATION SYSTEMS

Algorithm for Setting Fuzzy Logical Inclusion Systems Based on Statistical Data

verfasst von: M. S. Golosovskiy, A. V. Bogomolov, D. S. Tobin

Erschienen in: Automatic Documentation and Mathematical Linguistics | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An original algorithm for tuning zero-order Sugeno-type fuzzy inference systems based on statistical data is presented. The algorithm is based on selecting areas around the reference points, finding the coordinates of the center of mass of the selected areas, and using them to set up a fuzzy inference system. A convergence theorem is proven for the proposed algorithm. The paper presents the results of studying the quality of the algorithm under conditions of changing the number of membership functions of input variables and the number of statistical data points, on the basis of which the fuzzy inference systems were tuned.

Literatur
  1. Kosko, B., Fuzzy systems as universal aproximators, IEEE Trans. Comput., 1994, vol. 43, no. 11, pp. 1329–1333. https://​doi.​org/​10.​1109/​12.​324566View ArticleMATH
  2. Kosko, B., Global stability of generalized additive fuzzy systems, IEEE Trans. Syst., Man, Cybern., C, 1998, vol. 28, no. 3, pp. 441–452. https://​doi.​org/​10.​1109/​5326.​704584View Article
  3. Piegat, A., Fuzzy Modeling and Control, Studies in Fuzziness and Soft Computing, vol. 69, Berlin Heidelberg: Springer, 2001. https://​doi.​org/​10.​1007/​978-3-7908-1824-6
  4. Manentia, F., Rossia, F., Goryunov, A.G., Dyadik, V.F., Kozin, K.A., Nadezhdin, I.S., and Mikhalevich, S.S., Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier, Resour.-Effic. Technol., 2015, vol. 1, no. 1, pp. 10–18. https://​doi.​org/​10.​1016/​j.​reffit.​2015.​07.​001View Article
  5. Golosovskiy, M., Bogomolov, A., and Tobin, D., Algorithm for configuring fuzzy inference systems by reference points based on the average value, Research Square Platform (Preprint), 2021. https://​doi.​org/​10.​21203/​rs.​3.​rs-172755/​v1
  6. Golosovskii, M.S., Mamdani fuzzy inference system local tuning algorithm with the saving interpretation capability of inference rules, Upr. Bol’shimi Sist., 2018, vol. 74, pp. 6–22. https://​doi.​org/​10.​25728/​ubs.​2018.​74.​1View Article
  7. Jang, J.-S.R., ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man, Cybern., 1993, vol. 23, no. 3, pp. 665–685. https://​doi.​org/​10.​1109/​21.​256541View Article
  8. Zadeh, L. and Aliev, R., Fuzzy Logic Theory and Applications: Part I and Part II, World Scientific, 2018.View Article
  9. Golosovskiy, M.S., Bogomolov, A.V., and Balandov, M.E., Optimized fuzzy inference for Sugeno-type systems, Autom. Doc. Math. Linguist., 2022, vol. 56, no. 5, pp. 237–244. https://​doi.​org/​10.​3103/​S000510552205002​8View Article
  10. Golosovskiy, M.S., Bogomolov, A.V., Terebov, D.S., and Evtushenko, E.V., Algorithm to adjust fuzzy inference system of Mamdani type, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Mekh. Fiz., 2018, vol. 10, no. 3, pp. 19–29. https://​doi.​org/​10.​14529/​mmph180303View Article
  11. Golosovskiy, M., Bogomolov, A., and Balandov, M., Algorithm for configuring Sugeno-type fuzzy inference systems based on the nearest neighbor method for use in cyber-physical systems, Cyber-Physical Systems: Intelligent Models and Algorithms, Studies in Systems, Decision and Control, vol. 417, Cham: Springer, 2022, pp. 83–97. https://​doi.​org/​10.​1007/​978-3-030-95116-0_​7View Article
  12. Golosovskiy, M.S., Bogomolov, A.V., and Evtushenko, E.V., An algorithm for setting Sugeno-type fuzzy inference systems, Autom. Doc. Math. Linguist., 2021, vol. 55, no. 3, pp. 79–88. https://​doi.​org/​10.​3103/​S000510552103002​XView Article
  13. Miyamoto, S., Ichihashi, H., and Honda, K., Algorithms for Fuzzy Clustering: Methods in c-Means Clustering with Applications, Studies in Fuzziness and Soft Computing, Berlin: Springer, 2008. https://​doi.​org/​10.​1007/​978-3-540-78737-2
  14. Graves, D. and Pedrycz, W., Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study, Fuzzy Sets Syst., 2010, vol. 161, no. 4, pp. 522–543. https://​doi.​org/​10.​1016/​j.​fss.​2009.​10.​021MathSciNetView Article
  15. Ojleska, V. and Stojanovski, G., Switched fuzzy systems: overview and perspectives, 9th Int. PhD Workshop on Systems and Control: Young Generation Viewpoint, Izola, Slovenia, 2008, pp. 221–226.
Metadaten
Titel
Algorithm for Setting Fuzzy Logical Inclusion Systems Based on Statistical Data
verfasst von
M. S. Golosovskiy
A. V. Bogomolov
D. S. Tobin
Publikationsdatum
01.02.2023
Verlag
Pleiades Publishing
Erschienen in
Automatic Documentation and Mathematical Linguistics / Ausgabe 1/2023
Print ISSN: 0005-1055
Elektronische ISSN: 1934-8371
DOI
https://doi.org/10.3103/S0005105523010028

Weitere Artikel der Ausgabe 1/2023

Automatic Documentation and Mathematical Linguistics 1/2023 Zur Ausgabe