Skip to main content
Erschienen in: Cellulose 3/2018

18.01.2018 | Original Paper

Activated carbon derived from chitin aerogels: preparation and CO2 adsorption

verfasst von: Rohan S. Dassanayake, Chamila Gunathilake, Noureddine Abidi, Mietek Jaroniec

Erschienen in: Cellulose | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Activated carbon was prepared by carbonization and KOH activation of chitin aerogels. The resulting carbon featured high CO2 adsorption of 5.02 mmol/g at 0 °C and 3.44 mmol/g at 25 °C under ambient pressure of 1 atm. The activated carbon showed a high specific surface area of ~ 520 m2/g, total pore volume of 0.30 cm3/g, and volume of micropores of ~ 0.19 cm3/g. KOH activation of carbonized chitin aerogels resulted in about 37-fold increase in the specific surface area and about 95-fold increase in the volume of micropores as compared to the as-synthesized chitin aerogel. These data indicate that the chitin-derived activated carbon can be used for adsorption-based environmental and related applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alhwaige AA, Ishida H, Qutubuddin S (2016) Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites. ACS Sustain Chem Eng 4:1286–1295CrossRef Alhwaige AA, Ishida H, Qutubuddin S (2016) Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites. ACS Sustain Chem Eng 4:1286–1295CrossRef
Zurück zum Zitat Andres E, Albesa-Jove D, Biarnes X, Moerschbacher BM, Guerin ME, Planas A (2014) Structural basis of chitin oligosaccharide deacetylation. Angew Chem Int Ed 53:6882–6887CrossRef Andres E, Albesa-Jove D, Biarnes X, Moerschbacher BM, Guerin ME, Planas A (2014) Structural basis of chitin oligosaccharide deacetylation. Angew Chem Int Ed 53:6882–6887CrossRef
Zurück zum Zitat Azuma K, Ifuku S, Osaki T, Okamoto Y, Minami S (2014) Preparation and biomedical applications of chitin and chitosan nanofibers. J Biomed Nanotechnol 10:2891–2920CrossRef Azuma K, Ifuku S, Osaki T, Okamoto Y, Minami S (2014) Preparation and biomedical applications of chitin and chitosan nanofibers. J Biomed Nanotechnol 10:2891–2920CrossRef
Zurück zum Zitat Bandyopadhyay S, Anil AG, James A, Patra A (2016) Multifunctional porous organic polymers: tuning of porosity, CO2, and H2 storage and visible-light-driven photocatalysis. ACS Appl Mater Interfaces 8:27669–27678CrossRef Bandyopadhyay S, Anil AG, James A, Patra A (2016) Multifunctional porous organic polymers: tuning of porosity, CO2, and H2 storage and visible-light-driven photocatalysis. ACS Appl Mater Interfaces 8:27669–27678CrossRef
Zurück zum Zitat Barber PS, Kelley SP, Griggs CS, Wallace S, Rogers RD (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 16:1828–1836CrossRef Barber PS, Kelley SP, Griggs CS, Wallace S, Rogers RD (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 16:1828–1836CrossRef
Zurück zum Zitat Berger AH, Bhown AS (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 4:562–567CrossRef Berger AH, Bhown AS (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 4:562–567CrossRef
Zurück zum Zitat Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102CrossRef Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102CrossRef
Zurück zum Zitat Dassanayake RS, Gunathilake C, Jackson T, Jaroniec M, Abidi N (2016a) Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose 23:1363–1374CrossRef Dassanayake RS, Gunathilake C, Jackson T, Jaroniec M, Abidi N (2016a) Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose 23:1363–1374CrossRef
Zurück zum Zitat Dassanayake RS, Rajakaruna E, Moussa H, Abidi N (2016b) One-pot synthesis of MnO2–chitin hybrids for effective removal of methylene blue. Int J Biol Macromol Part A 93:350–358CrossRef Dassanayake RS, Rajakaruna E, Moussa H, Abidi N (2016b) One-pot synthesis of MnO2–chitin hybrids for effective removal of methylene blue. Int J Biol Macromol Part A 93:350–358CrossRef
Zurück zum Zitat Dassanayake RS, Gunathilake C, Dassanayake AC, Abidi N, Jaroniec M (2017) Amidoxime-functionalized nanocrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. J Mater Chem A 5:7462–7473CrossRef Dassanayake RS, Gunathilake C, Dassanayake AC, Abidi N, Jaroniec M (2017) Amidoxime-functionalized nanocrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. J Mater Chem A 5:7462–7473CrossRef
Zurück zum Zitat Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, Du Y, Kuga S (2012) Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem 22:5801–5809CrossRef Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, Du Y, Kuga S (2012) Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem 22:5801–5809CrossRef
Zurück zum Zitat Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942CrossRef Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942CrossRef
Zurück zum Zitat Eftaiha AF, Alsoubani F, Assaf KI, Nau WM, Troll C, Qaroush AK (2016) Chitin-acetate/DMSO as a supramolecular green CO2-phile. RSC Adv 6:22090–22093CrossRef Eftaiha AF, Alsoubani F, Assaf KI, Nau WM, Troll C, Qaroush AK (2016) Chitin-acetate/DMSO as a supramolecular green CO2-phile. RSC Adv 6:22090–22093CrossRef
Zurück zum Zitat Fujiki J, Yogo K (2016) The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping. Chem Commun 52:186–189CrossRef Fujiki J, Yogo K (2016) The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping. Chem Commun 52:186–189CrossRef
Zurück zum Zitat Gholidoust A, Atkinson JD, Hashisho Z (2017) Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke. Energy Fuels 31:1756–1763CrossRef Gholidoust A, Atkinson JD, Hashisho Z (2017) Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke. Energy Fuels 31:1756–1763CrossRef
Zurück zum Zitat Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW Jr, Toochinda P, Chuang SSC (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35:31–36CrossRef Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW Jr, Toochinda P, Chuang SSC (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35:31–36CrossRef
Zurück zum Zitat Guillerm V, Weselinski LJ, Alkordi M, Mohideen MIH, Belmabkhout Y, Cairns AJ, Eddaoudi M (2014) Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chem Commun 50:1937–1940CrossRef Guillerm V, Weselinski LJ, Alkordi M, Mohideen MIH, Belmabkhout Y, Cairns AJ, Eddaoudi M (2014) Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chem Commun 50:1937–1940CrossRef
Zurück zum Zitat Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M (2016) Amidoxime-functionalized microcrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at elevated temperatures. J Mater Chem A 4:4808–4819CrossRef Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M (2016) Amidoxime-functionalized microcrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at elevated temperatures. J Mater Chem A 4:4808–4819CrossRef
Zurück zum Zitat Hakim A, Marliza TS, Abu Tahari NM, Wan Isahak RWN, Yusop RM, Mohamed Hisham WM, Yarmo AM (2016) Studies on CO2 Adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4). Ind Eng Chem Res 55:7888–7897CrossRef Hakim A, Marliza TS, Abu Tahari NM, Wan Isahak RWN, Yusop RM, Mohamed Hisham WM, Yarmo AM (2016) Studies on CO2 Adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4). Ind Eng Chem Res 55:7888–7897CrossRef
Zurück zum Zitat Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRef Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRef
Zurück zum Zitat Hauchhum L, Mahanta P (2014) Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int J Energy Environ Eng 5:349–356CrossRef Hauchhum L, Mahanta P (2014) Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int J Energy Environ Eng 5:349–356CrossRef
Zurück zum Zitat Jagiello J, Olivier JP (2013a) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRef Jagiello J, Olivier JP (2013a) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRef
Zurück zum Zitat Jagiello J, Olivier JP (2013b) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783CrossRef Jagiello J, Olivier JP (2013b) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783CrossRef
Zurück zum Zitat Jayakumar R, Reis RL, Mano JF (2006) Phosphorous containing chitosan beads for controlled oral drug delivery. J Bioact Compat Polym 21:327–340CrossRef Jayakumar R, Reis RL, Mano JF (2006) Phosphorous containing chitosan beads for controlled oral drug delivery. J Bioact Compat Polym 21:327–340CrossRef
Zurück zum Zitat Jayakumar R, Nwe N, Nagagama H, Furuike T, Tamura H (2008) Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp 264:163–167CrossRef Jayakumar R, Nwe N, Nagagama H, Furuike T, Tamura H (2008) Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp 264:163–167CrossRef
Zurück zum Zitat Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRef Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRef
Zurück zum Zitat Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12:1876–1887CrossRef Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12:1876–1887CrossRef
Zurück zum Zitat Jiao Y, Zheng Y, Smith SC, Du A, Zhu Z (2014) Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. Chemsuschem 7:435–441CrossRef Jiao Y, Zheng Y, Smith SC, Du A, Zhu Z (2014) Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. Chemsuschem 7:435–441CrossRef
Zurück zum Zitat Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol 4:303–309CrossRef Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol 4:303–309CrossRef
Zurück zum Zitat Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35:44–61CrossRef Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35:44–61CrossRef
Zurück zum Zitat Keramati M, Ghoreyshi AA (2014) Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E Low Dimens Syst Nanostruct 57:161–168CrossRef Keramati M, Ghoreyshi AA (2014) Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E Low Dimens Syst Nanostruct 57:161–168CrossRef
Zurück zum Zitat Kumar S, de A. e Silva J, Wani MY, Dias CMF, Sobral AJFN (2016) Studies of carbon dioxide capture on porous chitosan derivative. J Dispers Sci Technol 37:155–158CrossRef Kumar S, de A. e Silva J, Wani MY, Dias CMF, Sobral AJFN (2016) Studies of carbon dioxide capture on porous chitosan derivative. J Dispers Sci Technol 37:155–158CrossRef
Zurück zum Zitat Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan marine. Drugs 8:1567–1636 Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan marine. Drugs 8:1567–1636
Zurück zum Zitat Liu S, Sun J, Yu L, Zhang C, Bi J, Zhu F, Qu M, Jiang C, Yang Q (2012) Extraction and characterization of chitin from the beetle Holotrichia Parallela motschulsky. Molecules 17:4604–4611CrossRef Liu S, Sun J, Yu L, Zhang C, Bi J, Zhu F, Qu M, Jiang C, Yang Q (2012) Extraction and characterization of chitin from the beetle Holotrichia Parallela motschulsky. Molecules 17:4604–4611CrossRef
Zurück zum Zitat López-Aranguren P, Builes S, Fraile J, Vega LF, Domingo C (2014) Understanding the performance of new amine-functionalized mesoporous silica materials for CO2 adsorption. Ind Eng Chem Res 53:15611–15619CrossRef López-Aranguren P, Builes S, Fraile J, Vega LF, Domingo C (2014) Understanding the performance of new amine-functionalized mesoporous silica materials for CO2 adsorption. Ind Eng Chem Res 53:15611–15619CrossRef
Zurück zum Zitat Maity DK, Halder A, Bhattacharya B, Das A, Ghoshal D (2016) Selective CO2 adsorption by nitro functionalized metal organic frameworks. Cryst Growth Des 16:1162–1167CrossRef Maity DK, Halder A, Bhattacharya B, Das A, Ghoshal D (2016) Selective CO2 adsorption by nitro functionalized metal organic frameworks. Cryst Growth Des 16:1162–1167CrossRef
Zurück zum Zitat Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305CrossRef Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305CrossRef
Zurück zum Zitat Nagatani K, Garcia-Baños B, Peñaranda-Foix FL, Catalá-Civera JM, Mallada R, Santamaría J (2012) Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis 18:1698–1710CrossRef Nagatani K, Garcia-Baños B, Peñaranda-Foix FL, Catalá-Civera JM, Mallada R, Santamaría J (2012) Chitin microparticles for the control of intestinal inflammation. Inflamm Bowel Dis 18:1698–1710CrossRef
Zurück zum Zitat Nigar H, Garcia-Baños B, Peñaranda-Foix FL, Catalá-Civera JM, Mallada R, Santamaría J (2016) Amine-functionalized mesoporous silica: a material capable of CO2 adsorption and fast regeneration by microwave heating. AIChE J 62:547–555CrossRef Nigar H, Garcia-Baños B, Peñaranda-Foix FL, Catalá-Civera JM, Mallada R, Santamaría J (2016) Amine-functionalized mesoporous silica: a material capable of CO2 adsorption and fast regeneration by microwave heating. AIChE J 62:547–555CrossRef
Zurück zum Zitat No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—a review. J Aquat Food Prod Technol 4:27–52CrossRef No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—a review. J Aquat Food Prod Technol 4:27–52CrossRef
Zurück zum Zitat Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRef Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRef
Zurück zum Zitat Primo A, Forneli A, Corma A, García H (2012) From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. Chemsuschem 5:2207–2214CrossRef Primo A, Forneli A, Corma A, García H (2012) From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. Chemsuschem 5:2207–2214CrossRef
Zurück zum Zitat Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455:219–228CrossRef Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455:219–228CrossRef
Zurück zum Zitat Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
Zurück zum Zitat Shahidi F, Arachchi JKV, Jeon Y (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51CrossRef Shahidi F, Arachchi JKV, Jeon Y (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51CrossRef
Zurück zum Zitat Shanmugam N, Lee KT, Cheng WY, Lu SY (2012) Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. J Polym Sci A Polym Chem 50:2521–2526CrossRef Shanmugam N, Lee KT, Cheng WY, Lu SY (2012) Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. J Polym Sci A Polym Chem 50:2521–2526CrossRef
Zurück zum Zitat Sharp R (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757CrossRef Sharp R (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757CrossRef
Zurück zum Zitat Silvestre-Albero J, Wahby A, Sepulveda-Escribano A, Martinez-Escandell M, Kaneko K, Rodriguez-Reinoso F (2011) Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chem Commun 47:6840–6842CrossRef Silvestre-Albero J, Wahby A, Sepulveda-Escribano A, Martinez-Escandell M, Kaneko K, Rodriguez-Reinoso F (2011) Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chem Commun 47:6840–6842CrossRef
Zurück zum Zitat Siriwardane RV, Shen M-S, Fisher EP, Losch J (2005) Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19:1153–1159CrossRef Siriwardane RV, Shen M-S, Fisher EP, Losch J (2005) Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19:1153–1159CrossRef
Zurück zum Zitat Sneddon G, Ganin AY, Yiu HHP (2015) Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology. Energy Technol 3:249–258CrossRef Sneddon G, Ganin AY, Yiu HHP (2015) Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology. Energy Technol 3:249–258CrossRef
Zurück zum Zitat Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T, Long JR (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781CrossRef Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T, Long JR (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781CrossRef
Zurück zum Zitat Tokuyasu K, Mitsutomi M, Yamaguchi I, Hayashi K, Mori Y (2000) Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. Biochemistry 39:8837–8843CrossRef Tokuyasu K, Mitsutomi M, Yamaguchi I, Hayashi K, Mori Y (2000) Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. Biochemistry 39:8837–8843CrossRef
Zurück zum Zitat Vovk EI, Turksoy A, Bukhtiyarov VI, Ozensoy E (2013) Interactive surface chemistry of CO2 and NO2 on metal oxide surfaces: competition for catalytic adsorption sites and reactivity. J Phys Chem C 117:7713–7720CrossRef Vovk EI, Turksoy A, Bukhtiyarov VI, Ozensoy E (2013) Interactive surface chemistry of CO2 and NO2 on metal oxide surfaces: competition for catalytic adsorption sites and reactivity. J Phys Chem C 117:7713–7720CrossRef
Zurück zum Zitat Wickramaratne NP, Jaroniec M (2013a) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855CrossRef Wickramaratne NP, Jaroniec M (2013a) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855CrossRef
Zurück zum Zitat Wickramaratne NP, Jaroniec M (2013b) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116CrossRef Wickramaratne NP, Jaroniec M (2013b) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116CrossRef
Zurück zum Zitat Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef
Metadaten
Titel
Activated carbon derived from chitin aerogels: preparation and CO2 adsorption
verfasst von
Rohan S. Dassanayake
Chamila Gunathilake
Noureddine Abidi
Mietek Jaroniec
Publikationsdatum
18.01.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1660-3

Weitere Artikel der Ausgabe 3/2018

Cellulose 3/2018 Zur Ausgabe