Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 10/2024

18.08.2022 | Original Article

Adsorption of nitrate from municipal wastewater by synthesized chitosan/iron/activated carbon of orange peel composite

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 10/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The target in this perusal was to remove nitrate from municipal effluent by a composite of orange peel activated carbon/chitosan/iron synthesized via sono-chemical method. The chitosan was synthesized from prawn shells via sono-chemical method. Identification of the composite functional groups, the morphology of its surface and pores, and porosity properties were investigated by FTIR, SEM, and BET techniques. The effect of solution pH (1–6), adsorbent amount (0.05–0.15 g), and pollutant concentration (20–100 mg/L) on the nitrate adsorption operation was investigated via the batch process and the optimal operating conditions were determined using the central composite design (CCD). The breakthrough curves of the continuous adsorption process were investigated through Thomas, Yoon-Nelson, and Bohart-Adams patterns. The results offered that the adsorption confirmed the pseudo-second-order kinetics (R2 = 1). Also, among the studied isotherms, the Langmuir pattern described well the adsorption of nitrate upon the composite (R2 = 0.9999) and the maximum adsorption valence was 263.157 mg/g composite. The optimum pH of nitrate uptake was 2.023. Nitrate uptake was increased by decreasing temperature, indicating that the process was exothermic. Nitrate removal efficiency with composite was estimated to be 99.58%. The equilibrium capacity of the Thomas model in the continuous process is close to the experimental adsorption capacity (qeq) obtained from the breakthrough curves. In general, it can be said that the composite of orange peel activated carbon/prawn shell chitosan/iron has a good performance in the process of nitrate ion adsorption in a discontinuous (batch) and continuous adsorption process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
5.
Zurück zum Zitat Water S, World Health O (2006) Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. Water S, World Health O (2006) Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations.
6.
Zurück zum Zitat Sadeq M, Moe CL, Attarassi B, Cherkaoui I, Elaouad R, Idrissi L (2008) Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. Int J Hyg Environ Health 211:546–554 Sadeq M, Moe CL, Attarassi B, Cherkaoui I, Elaouad R, Idrissi L (2008) Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. Int J Hyg Environ Health 211:546–554
7.
Zurück zum Zitat Cho DW, Chon CM, Jeon BH, Kim Y, Khan MA, Song H (2010) The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 81(5):611–616 Cho DW, Chon CM, Jeon BH, Kim Y, Khan MA, Song H (2010) The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 81(5):611–616
8.
Zurück zum Zitat Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J Hazard Mater 166(1):508–513 Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J Hazard Mater 166(1):508–513
9.
Zurück zum Zitat Ahmadi M, Rahmani H, Ramavandi B, Kakavandi B (2017) Removal of nitrate from aqueous solution using activated carbon modified with Fenton reagents. Desalin Water Treat 76:265–275 Ahmadi M, Rahmani H, Ramavandi B, Kakavandi B (2017) Removal of nitrate from aqueous solution using activated carbon modified with Fenton reagents. Desalin Water Treat 76:265–275
10.
Zurück zum Zitat Dongre RS (2018) Phosphate & nitrate removal from agricultural runoff by chitosan-graphite composite. Research & Development in Material Science 11 Dongre RS (2018) Phosphate & nitrate removal from agricultural runoff by chitosan-graphite composite. Research & Development in Material Science 11
11.
Zurück zum Zitat Alighardashi A, KashitarashEsfahani Z, Najafi F (2019) Investigating the efficiency of functionalized PAMAM-GO nano-composite for nitrate removal from aqua solutions. J Water and Wastewater Ab va Fazilab (in persian) 29(6):79–90 Alighardashi A, KashitarashEsfahani Z, Najafi F (2019) Investigating the efficiency of functionalized PAMAM-GO nano-composite for nitrate removal from aqua solutions. J Water and Wastewater Ab va Fazilab (in persian) 29(6):79–90
12.
Zurück zum Zitat Robles-Jimarez HR, Sanjuan-Navarro L, Jornet-Martinez N, Primaz CT, Teruel-Juanes R, Molins-Legua C, Ribes-Greus A, Campins-Falco P (2022) New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: process sustainability and scale-up possibilities. Sci Total Environ 805:150317 Robles-Jimarez HR, Sanjuan-Navarro L, Jornet-Martinez N, Primaz CT, Teruel-Juanes R, Molins-Legua C, Ribes-Greus A, Campins-Falco P (2022) New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: process sustainability and scale-up possibilities. Sci Total Environ 805:150317
13.
Zurück zum Zitat Pourkhabbaz A, Zeidi A, Mehrjo F (2020) Survey of nitrate removal method from aqueous solutions using Titanium dioxide nano-photocatalyst. Journal of Health 10(4):396–410 Pourkhabbaz A, Zeidi A, Mehrjo F (2020) Survey of nitrate removal method from aqueous solutions using Titanium dioxide nano-photocatalyst. Journal of Health 10(4):396–410
14.
Zurück zum Zitat Wu K, Li Y, Liu T, Huang Q, Yang S, Wang W, Jin P (2019) The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: adsorption properties and mechanisms. Appl Surf Sci 478:539–551 Wu K, Li Y, Liu T, Huang Q, Yang S, Wang W, Jin P (2019) The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: adsorption properties and mechanisms. Appl Surf Sci 478:539–551
15.
Zurück zum Zitat Fotsing PN, Bouazizi N, Woumfo ED, Mofaddel N, Le-Derf F, Vieillard J (2021) Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent. J Environ Chem Eng 9:104618 Fotsing PN, Bouazizi N, Woumfo ED, Mofaddel N, Le-Derf F, Vieillard J (2021) Investigation of chromate and nitrate removal by adsorption at the surface of an amine-modified cocoa shell adsorbent. J Environ Chem Eng 9:104618
16.
Zurück zum Zitat Tsuchiya Y, Yamaya Y, Amano Y, Machida M (2021) Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption. J Environ Manage 289:112484 Tsuchiya Y, Yamaya Y, Amano Y, Machida M (2021) Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption. J Environ Manage 289:112484
17.
Zurück zum Zitat Hydari H, Sharififard H, Nabavinia M, Parvizi MR (2012) A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem Eng J 193–194:276–282 Hydari H, Sharififard H, Nabavinia M, Parvizi MR (2012) A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem Eng J 193–194:276–282
18.
Zurück zum Zitat Sharififard H, Shahraki ZH, Rezvanpanah E, Hosseini Rad H (2018) A novel natural chitosan/activated carbon/iron bio-nanocomposite: sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Biores Technol 270:562–569 Sharififard H, Shahraki ZH, Rezvanpanah E, Hosseini Rad H (2018) A novel natural chitosan/activated carbon/iron bio-nanocomposite: sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Biores Technol 270:562–569
19.
Zurück zum Zitat Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R (2022) Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ Res 212:113274 Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R (2022) Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ Res 212:113274
20.
Zurück zum Zitat Pai S, Srinivas Kini M, Mythili R, Selvaraj R (2022) Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environ Res 210:112951 Pai S, Srinivas Kini M, Mythili R, Selvaraj R (2022) Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environ Res 210:112951
21.
Zurück zum Zitat Sodhani H, Hedaoo S, Murugesan G, Pai S, Vinayagam R, Varadaven katesan T, Bharath G, Haija MA, Nadda AK, Govarthanan M, Selvaraj R, (2022) Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract. Chemosphere 299:134752 Sodhani H, Hedaoo S, Murugesan G, Pai S, Vinayagam R, Varadaven katesan T, Bharath G, Haija MA, Nadda AK, Govarthanan M, Selvaraj R, (2022) Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract. Chemosphere 299:134752
22.
Zurück zum Zitat Shahraki ZH, Sharififard H, Lashanizadegan A (2018) Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability. Materials Research Express 5(5):055603 Shahraki ZH, Sharififard H, Lashanizadegan A (2018) Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability. Materials Research Express 5(5):055603
23.
Zurück zum Zitat Ahmad K, Shah IA, Ali S, Khan MT, Ahmed Qureshi MB, Ali Shah SH, Ali A, Rashid W, Gul HN (2022) Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride. Environ Sci Pollut Res 29:6375–6388 Ahmad K, Shah IA, Ali S, Khan MT, Ahmed Qureshi MB, Ali Shah SH, Ali A, Rashid W, Gul HN (2022) Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride. Environ Sci Pollut Res 29:6375–6388
24.
Zurück zum Zitat Taşar Ş, Kaya F, Özer A (2014) Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2(2):1018–1026 Taşar Ş, Kaya F, Özer A (2014) Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2(2):1018–1026
25.
Zurück zum Zitat Vázquez G, Freire MS, González-Alvarez J, Antorrena G (2009) Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination 249(2):855–860 Vázquez G, Freire MS, González-Alvarez J, Antorrena G (2009) Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination 249(2):855–860
26.
Zurück zum Zitat Hu Z, Lei L, Li Y, Ni Y (2003) Chromium adsorption on high-performance activated carbons from aqueous solution. Sep Purif Technol 31(1):13–18 Hu Z, Lei L, Li Y, Ni Y (2003) Chromium adsorption on high-performance activated carbons from aqueous solution. Sep Purif Technol 31(1):13–18
27.
Zurück zum Zitat Barkat M, Nibou D, Chegrouche S, Mellah A (2009) Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions. Chem Eng Process 48(1):38–47 Barkat M, Nibou D, Chegrouche S, Mellah A (2009) Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions. Chem Eng Process 48(1):38–47
28.
Zurück zum Zitat Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332 Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332
29.
Zurück zum Zitat Deniz F (2014) Potential use of shell biomass (Juglans regia L.) for dye removal: relationships between kinetic pseudo-second-order model parameters and biosorption efficiency. Desalination and Water Treatment 52(1–3):219–226 Deniz F (2014) Potential use of shell biomass (Juglans regia L.) for dye removal: relationships between kinetic pseudo-second-order model parameters and biosorption efficiency. Desalination and Water Treatment 52(1–3):219–226
30.
Zurück zum Zitat Naushad M, Khan MA, Alothman ZA, Khan MR, Kumar M (2015) Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalin Water Treat 57:15848–15861 Naushad M, Khan MA, Alothman ZA, Khan MR, Kumar M (2015) Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalin Water Treat 57:15848–15861
31.
Zurück zum Zitat Sharififard H, Pepe F, Soleimani M, Aprea P, Caputo D (2016) Iron-activated carbon nanocomposite: synthesis, characterization and application for lead removal from aqueous solution. RSC Adv 6(49):42845–42853 Sharififard H, Pepe F, Soleimani M, Aprea P, Caputo D (2016) Iron-activated carbon nanocomposite: synthesis, characterization and application for lead removal from aqueous solution. RSC Adv 6(49):42845–42853
32.
Zurück zum Zitat Boyd GE, Adamson AW, Myers LS Jr, LS, (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites II Kinetics1. J American Chem Soc 69(11):2836–284 Boyd GE, Adamson AW, Myers LS Jr, LS, (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites II Kinetics1. J American Chem Soc 69(11):2836–284
33.
Zurück zum Zitat Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275 Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275
34.
Zurück zum Zitat Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811 Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811
35.
Zurück zum Zitat Beyki MH, Alijani H, Fazli Y (2016) Poly o-phenylenediamine–MgAl@ CaFe2O4 nanohybrid for effective removing of lead (II), chromium (III) and anionic azo dye. Process Saf Environ Prot 102:687–699 Beyki MH, Alijani H, Fazli Y (2016) Poly o-phenylenediamine–MgAl@ CaFe2O4 nanohybrid for effective removing of lead (II), chromium (III) and anionic azo dye. Process Saf Environ Prot 102:687–699
36.
Zurück zum Zitat Asgarzadeh S, Rostamian R, Faez E, Maleki A, Daraei H (2016) Biosorption of Pb (II), Cu (II), and Ni (II) ions onto novel lowcost P eldarica leaves-based biosorbent isotherm, kinetics, and operational parameters investigation. Desalination and Water Treat 57(31):14544–14551 Asgarzadeh S, Rostamian R, Faez E, Maleki A, Daraei H (2016) Biosorption of Pb (II), Cu (II), and Ni (II) ions onto novel lowcost P eldarica leaves-based biosorbent isotherm, kinetics, and operational parameters investigation. Desalination and Water Treat 57(31):14544–14551
37.
Zurück zum Zitat Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645 Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645
38.
Zurück zum Zitat Sağ Y, Aktay Y (2002) Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J 12(2):143–153 Sağ Y, Aktay Y (2002) Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J 12(2):143–153
39.
Zurück zum Zitat Namasivayam C, Sangeetha D (2006) Removal and recovery of vanadium (V) by adsorption onto ZnCl 2 activated carbon: kinetics and isotherms. Adsorption 12(2):103–117 Namasivayam C, Sangeetha D (2006) Removal and recovery of vanadium (V) by adsorption onto ZnCl 2 activated carbon: kinetics and isotherms. Adsorption 12(2):103–117
40.
Zurück zum Zitat Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A (2008) Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazard Mater 156(1–3):412–420 Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A (2008) Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazard Mater 156(1–3):412–420
41.
Zurück zum Zitat Namasivayam C, Sureshkumar MV (2009) Removal and recovery of Molybdenum from aqueous solutions by adsorption onto surfactant‐modified Coir Pith, a lignocellulosic polymer. CLEAN–Soil, Air, Water 37(1):60–66. Namasivayam C, Sureshkumar MV (2009) Removal and recovery of Molybdenum from aqueous solutions by adsorption onto surfactant‐modified Coir Pith, a lignocellulosic polymer. CLEAN–Soil, Air, Water 37(1):60–66.
42.
Zurück zum Zitat Mathialagan T, Viraraghavan T (2009) Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Biores Technol 100(2):549–558 Mathialagan T, Viraraghavan T (2009) Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Biores Technol 100(2):549–558
43.
Zurück zum Zitat Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66(10):1664–1666 Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66(10):1664–1666
44.
Zurück zum Zitat Lim AP, Aris AZ (2014) Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem Eng J 87:50–61 Lim AP, Aris AZ (2014) Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem Eng J 87:50–61
45.
Zurück zum Zitat Ahmad AA, Idris A, Hameed BH (2014) Modeling of disperse dye adsorption onto bamboo-based activated carbon in fixed-bed column. Desalin Water Treat 52(1–3):248–256 Ahmad AA, Idris A, Hameed BH (2014) Modeling of disperse dye adsorption onto bamboo-based activated carbon in fixed-bed column. Desalin Water Treat 52(1–3):248–256
46.
Zurück zum Zitat Sharififard H, Soleimani M (2015) Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium(v) ion adsorbents. RSC Adv 5:80650–80660 Sharififard H, Soleimani M (2015) Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium(v) ion adsorbents. RSC Adv 5:80650–80660
47.
Zurück zum Zitat Hariani PL, Faizal M, Ridwan R, Marsi M, Setiabudidaya D (2018) Removal of Procion Red MX-5B from songket’s industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite. Sustain Environ Res 28:158–164 Hariani PL, Faizal M, Ridwan R, Marsi M, Setiabudidaya D (2018) Removal of Procion Red MX-5B from songket’s industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite. Sustain Environ Res 28:158–164
48.
Zurück zum Zitat Siddeeg SM, Tahoon MA, Mnif W, Rebah FB (2020) Iron oxide/chitosan magnetic nanocomposite immobilized manganese peroxidase for decolorization of textile wastewater. Processes 8:5 Siddeeg SM, Tahoon MA, Mnif W, Rebah FB (2020) Iron oxide/chitosan magnetic nanocomposite immobilized manganese peroxidase for decolorization of textile wastewater. Processes 8:5
49.
Zurück zum Zitat Sowmya SR, Madhu GM, Sankannavar R, Yerragolla S (2021) Adsorption using chitosan and nano zerovalent iron composite material for sustainable water treatment. Materials Research Express 8:024001 Sowmya SR, Madhu GM, Sankannavar R, Yerragolla S (2021) Adsorption using chitosan and nano zerovalent iron composite material for sustainable water treatment. Materials Research Express 8:024001
50.
Zurück zum Zitat Amininejad M, Maroosi A, Broomandnasab S, Moazed H, Farasat M (2019) Evaluation of nitrate removal from aqueous solution by nanostructure of Conocarpus. Irrigation and Water Engineering 10(1):166–179 Amininejad M, Maroosi A, Broomandnasab S, Moazed H, Farasat M (2019) Evaluation of nitrate removal from aqueous solution by nanostructure of Conocarpus. Irrigation and Water Engineering 10(1):166–179
51.
Zurück zum Zitat Zazouli MA (2019) Study on performance of walnut shells adsorbent in nitrate removal from the aqueous solutions. Environ Health 5(2):144–153 Zazouli MA (2019) Study on performance of walnut shells adsorbent in nitrate removal from the aqueous solutions. Environ Health 5(2):144–153
52.
Zurück zum Zitat Bafkar A, Baboli N (2018) Investigation of the efficiency of nitrate removal from aqueous solution using oak leaf nanostructure adsorbent. J Water and Soil Conserv 25(5):233–247 Bafkar A, Baboli N (2018) Investigation of the efficiency of nitrate removal from aqueous solution using oak leaf nanostructure adsorbent. J Water and Soil Conserv 25(5):233–247
53.
Zurück zum Zitat Marezi M, Farahbakhsh M, Kheial S (2016) Kinetics and isotherm of nitrate sorption from aqueous solution using biochar. Water and Soil Sci 26(1–1):1450–2158 Marezi M, Farahbakhsh M, Kheial S (2016) Kinetics and isotherm of nitrate sorption from aqueous solution using biochar. Water and Soil Sci 26(1–1):1450–2158
54.
Zurück zum Zitat Boostani F, Sharififard H, Lahanizadegan A, Darvishi P (2022) Desulphurisation of liquid fuel using adsorption nto bio-based activated carbon modified with chitosan and Fe ions. International Journal of Environmental Analytical Chemistry Accepted 04 May 2022. https://doi.org/10.1080/03067319.2022.2076222. Boostani F, Sharififard H, Lahanizadegan A, Darvishi P (2022) Desulphurisation of liquid fuel using adsorption nto bio-based activated carbon modified with chitosan and Fe ions. International Journal of Environmental Analytical Chemistry Accepted 04 May 2022. https://​doi.​org/​10.​1080/​03067319.​2022.​2076222.
55.
Zurück zum Zitat Mohammadi A, Ardjmand M (2022) Management and removal of nitrate contamination of water at the source using modified natural nano zeolite. Anal Methods in Environ Chem J 5(01):36–48 Mohammadi A, Ardjmand M (2022) Management and removal of nitrate contamination of water at the source using modified natural nano zeolite. Anal Methods in Environ Chem J 5(01):36–48
56.
Zurück zum Zitat Quang HHP, Phan KT, Dinh NT, Thi TNT, Kajitvichyanukul P, Raizada P, Singh P, Nguyen VH (2022) Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water. Environ Res 212:113410 Quang HHP, Phan KT, Dinh NT, Thi TNT, Kajitvichyanukul P, Raizada P, Singh P, Nguyen VH (2022) Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water. Environ Res 212:113410
57.
Zurück zum Zitat Akbarpour R, Hajebrahimi Z, Dolatabadi M (2021) Removing nitrate from contaminated water using activated carbon prepared from hard pistachio shells. Pistachio and Health J 4(2):28–39 Akbarpour R, Hajebrahimi Z, Dolatabadi M (2021) Removing nitrate from contaminated water using activated carbon prepared from hard pistachio shells. Pistachio and Health J 4(2):28–39
58.
Zurück zum Zitat Stjepanović M, Velić N, Habuda-Stanić M (2022) Modified hazelnut shells as a novel adsorbent for the removal of nitrate from wastewater. Water 14(5):816 Stjepanović M, Velić N, Habuda-Stanić M (2022) Modified hazelnut shells as a novel adsorbent for the removal of nitrate from wastewater. Water 14(5):816
59.
Zurück zum Zitat Herath A, Reid C, Perez F, Pittman CU Jr, Mlsna TE (2021) Biochar-supported polyaniline hybrid for aqueous chromium and nitrate adsorption. J Environ Manage 296:113186 Herath A, Reid C, Perez F, Pittman CU Jr, Mlsna TE (2021) Biochar-supported polyaniline hybrid for aqueous chromium and nitrate adsorption. J Environ Manage 296:113186
60.
Zurück zum Zitat Alagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A, (2020) Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: Insight into behavior and mechanisms. Nanomaterials 10(7):1361 Alagha O, Manzar MS, Zubair M, Anil I, Mu’azu ND, Qureshi A, (2020) Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: Insight into behavior and mechanisms. Nanomaterials 10(7):1361
61.
Zurück zum Zitat Hu Q, Liu H, Zhang Z, Xie Y (2020) Nitrate removal from aqueous solution using polyaniline modified activated carbon: optimization and characterization. J Mol Liq 309:113057 Hu Q, Liu H, Zhang Z, Xie Y (2020) Nitrate removal from aqueous solution using polyaniline modified activated carbon: optimization and characterization. J Mol Liq 309:113057
62.
Zurück zum Zitat Shojaipour M, Ghaemy M, Amininasab SM (2020) Removal of NO3− ions from water using bioadsorbent based on gum tragacanth carbohydrate biopolymer. Carbohyd Polym 227:115367 Shojaipour M, Ghaemy M, Amininasab SM (2020) Removal of NO3− ions from water using bioadsorbent based on gum tragacanth carbohydrate biopolymer. Carbohyd Polym 227:115367
63.
Zurück zum Zitat Pan J, Gao B, Song W, Xu X, Yue Q (2020) Modified biogas residues as an eco-friendly and easily-recoverable biosorbent for nitrate and phosphate removals from surface water. J Hazard Mater 382:121073 Pan J, Gao B, Song W, Xu X, Yue Q (2020) Modified biogas residues as an eco-friendly and easily-recoverable biosorbent for nitrate and phosphate removals from surface water. J Hazard Mater 382:121073
64.
Zurück zum Zitat Li J, Dong S, Wang Y, Dou X, Hao H (2020) Nitrate removal from aqueous solutions by magnetic cationic hydrogel: effect of electrostatic adsorption and mechanism. J Environ Sci 91:177–188 Li J, Dong S, Wang Y, Dou X, Hao H (2020) Nitrate removal from aqueous solutions by magnetic cationic hydrogel: effect of electrostatic adsorption and mechanism. J Environ Sci 91:177–188
Metadaten
Titel
Adsorption of nitrate from municipal wastewater by synthesized chitosan/iron/activated carbon of orange peel composite
Publikationsdatum
18.08.2022
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 10/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-03198-2

Weitere Artikel der Ausgabe 10/2024

Biomass Conversion and Biorefinery 10/2024 Zur Ausgabe