Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 11/2019

06.09.2019 | Review Article

Advanced computing solutions for analysis of laryngeal disorders

verfasst von: H. Irem Turkmen, M. Elif Karsligil

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Clinical diagnosis of voice pathologies is performed by analyzing audio, color, shape, and vibration patterns of the laryngeal recordings which are taken with medical imaging devices such as video-laryngostroboscope, direct laryngoscopy, and high-speed videoendoscopes. This paper examines state-of-the-art methods and reveals open issues and problems of computing solutions for analysis and identification of laryngeal disorders. We propose a categorical representation of the most significant applications published so far in terms of their scopes, used methodologies, and achieved results. Laryngeal image/video analysis is discussed in four main categories: segmentation of vocal folds, classification of vocal fold disorders, vocal fold vibration analysis, and vocal fold image stitching. By this study, we reveal new opportunities and potentials of vision-based computerized solutions for evaluation, early diagnosis, and prevention of laryngeal disorders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pontes P, Gonçalves MI, Behlau M (1999) Vocal fold cover minor structural alterations: diagnostic errors. Phonoscope 2(4):175–185 Pontes P, Gonçalves MI, Behlau M (1999) Vocal fold cover minor structural alterations: diagnostic errors. Phonoscope 2(4):175–185
2.
Zurück zum Zitat Ulis JM, Yanagisawa E (2009) What’s new in differential diagnosis and treatment of hoarseness? Curr Opin Otolaryngol Head Neck Surg 17(3):209–215PubMed Ulis JM, Yanagisawa E (2009) What’s new in differential diagnosis and treatment of hoarseness? Curr Opin Otolaryngol Head Neck Surg 17(3):209–215PubMed
3.
Zurück zum Zitat Ziethe A, Patel R, Kunduk M, Eysholdt U, Graf S (2011) Clinical analysis methods of voice disorders. Curr Bioinforma 6(3):270–285 Ziethe A, Patel R, Kunduk M, Eysholdt U, Graf S (2011) Clinical analysis methods of voice disorders. Curr Bioinforma 6(3):270–285
4.
Zurück zum Zitat Verikas A, Uloza V, Bacauskiene M, Gelzinis A, Kelertas E (2009) Advances in laryngeal imaging. Eur Arch Otorhinolaryngol 266(10):1509–1520PubMed Verikas A, Uloza V, Bacauskiene M, Gelzinis A, Kelertas E (2009) Advances in laryngeal imaging. Eur Arch Otorhinolaryngol 266(10):1509–1520PubMed
5.
Zurück zum Zitat Gaskill CS, Awan JA, Watts CR, Awan SN (2017) Acoustic and perceptual classification of within-sample normal, intermittently dysphonic, and consistently dysphonic voice types. J Voice 31(2):218–228PubMed Gaskill CS, Awan JA, Watts CR, Awan SN (2017) Acoustic and perceptual classification of within-sample normal, intermittently dysphonic, and consistently dysphonic voice types. J Voice 31(2):218–228PubMed
6.
Zurück zum Zitat Teixeira JP, Fernandes PO (2015) Acoustic analysis of vocal dysphonia. Proc Comp Sci 64:466–473 Teixeira JP, Fernandes PO (2015) Acoustic analysis of vocal dysphonia. Proc Comp Sci 64:466–473
7.
Zurück zum Zitat Ali SM, Karule PT (2015) Design of System for Classification of Vocal Cord/Glottis Carcinoma using ANN and Support Vector Machine. Int J Comp Appl, (0975 – 8887) 132(4):1–7 Ali SM, Karule PT (2015) Design of System for Classification of Vocal Cord/Glottis Carcinoma using ANN and Support Vector Machine. Int J Comp Appl, (0975 – 8887) 132(4):1–7
8.
Zurück zum Zitat Roy N, Barkmeier-Kraemer J, Eadie T, Sivasankar MP, Mehta D, Paul D, Hillman R (2013) Evidence-based clinical voice assessment: a systematic review. Am J Speech-Lang Pathol 22(2):212–226PubMed Roy N, Barkmeier-Kraemer J, Eadie T, Sivasankar MP, Mehta D, Paul D, Hillman R (2013) Evidence-based clinical voice assessment: a systematic review. Am J Speech-Lang Pathol 22(2):212–226PubMed
9.
Zurück zum Zitat Resteghini C, Trama A, Borgonovi E, Hosni H, Corrao G, Orlandi E et al (2018) Big Data in Head and Neck Cancer. Curr Treat Options in Oncol 19(12):62 Resteghini C, Trama A, Borgonovi E, Hosni H, Corrao G, Orlandi E et al (2018) Big Data in Head and Neck Cancer. Curr Treat Options in Oncol 19(12):62
10.
Zurück zum Zitat Mehta DD, Hillman RE (2012) Current Role of Stroboscopy in Laryngeal Imaging. Curr Opin Otolaryngol Head Neck Surg 20(6):429–436 PMC. Web. 2017PubMedPubMedCentral Mehta DD, Hillman RE (2012) Current Role of Stroboscopy in Laryngeal Imaging. Curr Opin Otolaryngol Head Neck Surg 20(6):429–436 PMC. Web. 2017PubMedPubMedCentral
11.
Zurück zum Zitat Textbook of Laryngology, Nupur Kapoor Nerurkar, Jaypee Brothers Medical Publishers, 2017 Textbook of Laryngology, Nupur Kapoor Nerurkar, Jaypee Brothers Medical Publishers, 2017
12.
Zurück zum Zitat Clemmens, C., & Piccione, J. (2016). Airway Evaluation: Bronchoscopy, Laryngoscopy, and Tracheal Aspirates. Assisted Ventilation of the Neonate: Evidence-Based Approach to Newborn Respiratory Care, 118. Clemmens, C., & Piccione, J. (2016). Airway Evaluation: Bronchoscopy, Laryngoscopy, and Tracheal Aspirates. Assisted Ventilation of the Neonate: Evidence-Based Approach to Newborn Respiratory Care, 118.
13.
Zurück zum Zitat Lukes P, Zabrodsky M, Plzak J, Chovanec M, Betka J, Foltynova E, & Betka J (2013). Narrow band imaging (NBI)—endoscopic method for detection of head and neck cancer. In Endoscopy. IntechOpen. Lukes P, Zabrodsky M, Plzak J, Chovanec M, Betka J, Foltynova E, & Betka J (2013). Narrow band imaging (NBI)—endoscopic method for detection of head and neck cancer. In Endoscopy. IntechOpen.
14.
Zurück zum Zitat Piazza C, Del Bon F, Peretti G, Nicolai P (2012) Narrow band imaging in endoscopic evaluation of the larynx. Curr Opin Otolaryngol Head Neck Surg 20(6):472–476PubMed Piazza C, Del Bon F, Peretti G, Nicolai P (2012) Narrow band imaging in endoscopic evaluation of the larynx. Curr Opin Otolaryngol Head Neck Surg 20(6):472–476PubMed
15.
Zurück zum Zitat Mascharak S, Baird BJ, Holsinger FC (2018) Detecting oropharyngeal carcinoma using multispectral, narrow-band imaging and machine learning. Laryngoscope 128(11):2514–2520PubMed Mascharak S, Baird BJ, Holsinger FC (2018) Detecting oropharyngeal carcinoma using multispectral, narrow-band imaging and machine learning. Laryngoscope 128(11):2514–2520PubMed
16.
Zurück zum Zitat Assirati FS, Hashimoto CL, Dib RA, Fontes LHS, Rodriguez NT (2014) High definition endoscopy and narrow band imaging in the diagnosis of gastroesophageal reflux disease. ABCD Arq Bras Circulation Dig 27(1):59–65 Assirati FS, Hashimoto CL, Dib RA, Fontes LHS, Rodriguez NT (2014) High definition endoscopy and narrow band imaging in the diagnosis of gastroesophageal reflux disease. ABCD Arq Bras Circulation Dig 27(1):59–65
17.
Zurück zum Zitat Aghlmandi D, ve Faez K (2012) Automatic Segmentation of Glottal Space from Video Images Based on Mathematical Morphology and the hough Transform. Int J Electr Comp Eng (IJECE) 2(4):463–472 Aghlmandi D, ve Faez K (2012) Automatic Segmentation of Glottal Space from Video Images Based on Mathematical Morphology and the hough Transform. Int J Electr Comp Eng (IJECE) 2(4):463–472
18.
Zurück zum Zitat Irem H, Karsligil ME, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds Turkmen. Comput Biol Med 62:76–85 Published 1 Irem H, Karsligil ME, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds Turkmen. Comput Biol Med 62:76–85 Published 1
19.
Zurück zum Zitat Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647 Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647
20.
Zurück zum Zitat Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Ollinger MD (2007) Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med Image Anal 11(4):400–413PubMed Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Ollinger MD (2007) Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med Image Anal 11(4):400–413PubMed
21.
Zurück zum Zitat Lohscheller J, Eysholdt U, Toy H et al (2008) Phonovibrography: Mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging 27(3):300–309 PublishedPubMed Lohscheller J, Eysholdt U, Toy H et al (2008) Phonovibrography: Mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging 27(3):300–309 PublishedPubMed
22.
Zurück zum Zitat Yan Y, Chen X, Bless D (Jul. 2006) Automatic tracing of vocal-fold motion from high-speed digital images. IEEE Trans Biomed Eng 53(7):1394–1400PubMed Yan Y, Chen X, Bless D (Jul. 2006) Automatic tracing of vocal-fold motion from high-speed digital images. IEEE Trans Biomed Eng 53(7):1394–1400PubMed
23.
Zurück zum Zitat Turkmen H, Irem H, Karsligil ME, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Comput Biol Med 62:76–85 Turkmen H, Irem H, Karsligil ME, Kocak I (2015) Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Comput Biol Med 62:76–85
24.
Zurück zum Zitat Moccia S, De Momi E, Baselli G, & Mattos LS (2015) Vocal Folds Disorders Detection and Classification in Endoscopic Narrow-Band Images. Moccia S, De Momi E, Baselli G, & Mattos LS (2015) Vocal Folds Disorders Detection and Classification in Endoscopic Narrow-Band Images.
25.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331 Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331
26.
Zurück zum Zitat Allin S, Galeotti J, Stetten G, & Dailey SH, (2004). “Enhanced snake based segmentation of vocal folds”, In Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium, 15-18 2004, Virginia. Allin S, Galeotti J, Stetten G, & Dailey SH, (2004). “Enhanced snake based segmentation of vocal folds”, In Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium, 15-18 2004, Virginia.
27.
Zurück zum Zitat Cerrolaza JJ, Osma V, Sáenz N, Villanueva A, Gutiérrez JM, Godino JI ve Cabeza R, (2011). “Full-automatic glottis segmentation with active shape models”, In Models and Analysis of Vocal Emissions for Biomedical Applications 7th international Workshop, 25-27 August 2011, Firenze. 35 Cerrolaza JJ, Osma V, Sáenz N, Villanueva A, Gutiérrez JM, Godino JI ve Cabeza R, (2011). “Full-automatic glottis segmentation with active shape models”, In Models and Analysis of Vocal Emissions for Biomedical Applications 7th international Workshop, 25-27 August 2011, Firenze. 35
28.
Zurück zum Zitat Andrade-Miranda G, Saenz-Lechon N, Osma-Ruiz V, Godino-Llorente JI (2013) “A new approach for the glottis segmentation using snakes,”presented at the Int. Conf. on Bio-Inspired Systems and Signal Processing, Barcelona Andrade-Miranda G, Saenz-Lechon N, Osma-Ruiz V, Godino-Llorente JI (2013) “A new approach for the glottis segmentation using snakes,”presented at the Int. Conf. on Bio-Inspired Systems and Signal Processing, Barcelona
29.
Zurück zum Zitat Karakozoglou SZ, Henrich N, d’Alessandro C, ve Stylianou Y (2012) Automatic glottal segmentation using local-based active contours and application to glottovibrography. Speech Comm 54(5):641–654 Karakozoglou SZ, Henrich N, d’Alessandro C, ve Stylianou Y (2012) Automatic glottal segmentation using local-based active contours and application to glottovibrography. Speech Comm 54(5):641–654
30.
Zurück zum Zitat Yan Y, Du G, Zhu C, and Marriott G, “Snake based automatic tracing of vocal-fold motion from high-speed digital images,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process., 2012, pp. 593–596. Yan Y, Du G, Zhu C, and Marriott G, “Snake based automatic tracing of vocal-fold motion from high-speed digital images,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process., 2012, pp. 593–596.
31.
Zurück zum Zitat Saadah AK, Galatsanos NP, Bless D, Ramos CA (1998) Deformation analysis of the vocal folds form videostroboscopic image sequences of the larynx. J Acoust Soc Am 103:3627–3639PubMed Saadah AK, Galatsanos NP, Bless D, Ramos CA (1998) Deformation analysis of the vocal folds form videostroboscopic image sequences of the larynx. J Acoust Soc Am 103:3627–3639PubMed
32.
Zurück zum Zitat Manfredi C, Bocchi L, Bianchi S et al (2006) Objective vocal fold vibration assessment from videokymographic images. Biomed Signal Proc Control 1(2):129–136 Published Manfredi C, Bocchi L, Bianchi S et al (2006) Objective vocal fold vibration assessment from videokymographic images. Biomed Signal Proc Control 1(2):129–136 Published
33.
Zurück zum Zitat Osma-Ruiz V, Godino-Llorente JI, Sáenz-Lechón N, Fraile R (2008) Segmentation of the glottal space from laryngeal images using the watershed transform. Comput Med Imag Graphics 32(3):193–201 Osma-Ruiz V, Godino-Llorente JI, Sáenz-Lechón N, Fraile R (2008) Segmentation of the glottal space from laryngeal images using the watershed transform. Comput Med Imag Graphics 32(3):193–201
34.
Zurück zum Zitat Andrade-Miranda G, Godino-Llorente JI, Moro-Velázquez L, Gómez-García JA (2015) An automatic method to detect and track the glottal gap from high speed videoendoscopic images. Biomed Eng Online 14(1):100PubMedPubMedCentral Andrade-Miranda G, Godino-Llorente JI, Moro-Velázquez L, Gómez-García JA (2015) An automatic method to detect and track the glottal gap from high speed videoendoscopic images. Biomed Eng Online 14(1):100PubMedPubMedCentral
35.
Zurück zum Zitat Mendez A, Garcia B, Ruiz I ve Iturricha I, (2008). “Glottal Area Segmentation without Initialization using Gabor Filters”, In Signal Processing and Information Technology, IEEE International Symposium on, 16-19 Dec. 2008, Sarajevo. Mendez A, Garcia B, Ruiz I ve Iturricha I, (2008). “Glottal Area Segmentation without Initialization using Gabor Filters”, In Signal Processing and Information Technology, IEEE International Symposium on, 16-19 Dec. 2008, Sarajevo.
36.
Zurück zum Zitat Palm C, Lehmann TM, Bredno J, Neuschaefer-Rube C, Klajman S, and Spitzer K, (2001)“Automated analysis of stroboscopic image sequences by vibration profiles,” Proc. 5th Int. Workshop Advances Quantitative Laryngol., Voice Speech Res., Groningen, Netherlands. Palm C, Lehmann TM, Bredno J, Neuschaefer-Rube C, Klajman S, and Spitzer K, (2001)“Automated analysis of stroboscopic image sequences by vibration profiles,” Proc. 5th Int. Workshop Advances Quantitative Laryngol., Voice Speech Res., Groningen, Netherlands.
37.
Zurück zum Zitat Gloger O, Lehnert B, Schrade A et al (2015) Fully Automated Glottis Segmentation in Endoscopic Videos Using Local Color and Shape Features of Glottal Regions. IEEE Trans Biomed Eng 62(3):795–806 PublishedPubMed Gloger O, Lehnert B, Schrade A et al (2015) Fully Automated Glottis Segmentation in Endoscopic Videos Using Local Color and Shape Features of Glottal Regions. IEEE Trans Biomed Eng 62(3):795–806 PublishedPubMed
38.
Zurück zum Zitat Kuo CF, Wang HW, Hsiao SW et al (2014) Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement. Comput Med Imaging Graph 38(1):34–41 PublishedPubMed Kuo CF, Wang HW, Hsiao SW et al (2014) Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement. Comput Med Imaging Graph 38(1):34–41 PublishedPubMed
39.
Zurück zum Zitat Zhang Y, Bieging E, Tsui H, Jiang JJ (2010) Efficient and effective extraction of vocal fold vibratory patterns from high-speed digital imaging. J Voice 24(1):21–29PubMed Zhang Y, Bieging E, Tsui H, Jiang JJ (2010) Efficient and effective extraction of vocal fold vibratory patterns from high-speed digital imaging. J Voice 24(1):21–29PubMed
40.
Zurück zum Zitat Turkmen HI, Albayrak A, Karsligil ME, Kocak I (2017) Superpixel-based segmentation of glottal area from videolaryngoscopy images. Journal of Electronic Imaging 26(6):061608 Turkmen HI, Albayrak A, Karsligil ME, Kocak I (2017) Superpixel-based segmentation of glottal area from videolaryngoscopy images. Journal of Electronic Imaging 26(6):061608
41.
Zurück zum Zitat Laves MH, Bicker J, Kahrs LA, Ortmaier T (2019) A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int J Comput Assist Radiol Surg 14(3):483–492PubMed Laves MH, Bicker J, Kahrs LA, Ortmaier T (2019) A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int J Comput Assist Radiol Surg 14(3):483–492PubMed
42.
Zurück zum Zitat Ahmad K, Yan Y, Bless D (2012) Vocal fold vibratory characteristics of healthy geriatric females—analysis of high-speed digital images. J Voice 26(6):751–759PubMed Ahmad K, Yan Y, Bless D (2012) Vocal fold vibratory characteristics of healthy geriatric females—analysis of high-speed digital images. J Voice 26(6):751–759PubMed
43.
Zurück zum Zitat Manfredi C, Bocchi L, Cantarella G et al (2012) Videokymographic image processing: Objective parameters and user-friendly interface. Biomedical Signal Processing and Control 7(2):192–201 Published Manfredi C, Bocchi L, Cantarella G et al (2012) Videokymographic image processing: Objective parameters and user-friendly interface. Biomedical Signal Processing and Control 7(2):192–201 Published
44.
Zurück zum Zitat Shi T, Kim HJ, Murry T et al (2015) Tracing vocal fold vibrations using level set segmentation method. Int J Numer Methods Biomed Eng 31(6):e02715. Published Shi T, Kim HJ, Murry T et al (2015) Tracing vocal fold vibrations using level set segmentation method. Int J Numer Methods Biomed Eng 31(6):e02715. Published
45.
Zurück zum Zitat Chen G, Kreiman J, Alwan A (2014) The glottaltopogram: A method of analyzing high-speed images of the vocal folds. Comput Speech Lang 28(5 Special Issue:SI):1156–1169 PublishedPubMed Chen G, Kreiman J, Alwan A (2014) The glottaltopogram: A method of analyzing high-speed images of the vocal folds. Comput Speech Lang 28(5 Special Issue:SI):1156–1169 PublishedPubMed
46.
Zurück zum Zitat Warhurst S, McCabe P, Heard R, Yiu E, Wang G, Madill C. (2014) Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy. Published Warhurst S, McCabe P, Heard R, Yiu E, Wang G, Madill C. (2014) Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy. Published
47.
Zurück zum Zitat Yiu EML, Kong J, Fong R, Chan KMK (2010) A preliminary study of a quantitative analysis method for high speed laryngoscopic images. Int J Speech Lang Pathol 12:1–10 Yiu EML, Kong J, Fong R, Chan KMK (2010) A preliminary study of a quantitative analysis method for high speed laryngoscopic images. Int J Speech Lang Pathol 12:1–10
48.
Zurück zum Zitat Herbst CT, Unger J, Herzel H, Švec JG, Lohscheller J (2016) Phasegram analysis of vocal fold vibration documented with laryngeal high-speed video endoscopy. J Voice 30(6):771–7e1PubMed Herbst CT, Unger J, Herzel H, Švec JG, Lohscheller J (2016) Phasegram analysis of vocal fold vibration documented with laryngeal high-speed video endoscopy. J Voice 30(6):771–7e1PubMed
49.
Zurück zum Zitat De Biase NG, de Lima Pontes PA (2008) Blood vessels of vocal folds: a videolaryngoscopic study. Arch Otolaryngol–Head Neck Surg 134(7):720–724PubMed De Biase NG, de Lima Pontes PA (2008) Blood vessels of vocal folds: a videolaryngoscopic study. Arch Otolaryngol–Head Neck Surg 134(7):720–724PubMed
50.
Zurück zum Zitat Lin S-F, Chen H-T, Tsai T-L (2012) Automatic Identifying Laryngopharyngeal Reflux Using Artificial Neural Network. Biomed Eng-Appl Basis Commun 24(1):47–56 Published Lin S-F, Chen H-T, Tsai T-L (2012) Automatic Identifying Laryngopharyngeal Reflux Using Artificial Neural Network. Biomed Eng-Appl Basis Commun 24(1):47–56 Published
51.
Zurück zum Zitat Verikas A, Gelzinis A, Bacauskiene M et al (2006) Towards a computer-aided diagnosis system for vocal cord diseases. Artif Intell Med 36(1):71–84 Published.PubMed Verikas A, Gelzinis A, Bacauskiene M et al (2006) Towards a computer-aided diagnosis system for vocal cord diseases. Artif Intell Med 36(1):71–84 Published.PubMed
52.
Zurück zum Zitat Verikas A, Gelzinis A, Bacauskiene M et al (2005) Intelligent vocal cord image analysis for categorizing laryngeal diseases. 18th International Industrial and Engineering Applications of Artificial Intelligence and Expert Systems Location, Bari Verikas A, Gelzinis A, Bacauskiene M et al (2005) Intelligent vocal cord image analysis for categorizing laryngeal diseases. 18th International Industrial and Engineering Applications of Artificial Intelligence and Expert Systems Location, Bari
53.
Zurück zum Zitat Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Integrating global and local analysis of color, texture and geometrical information for categorizing laryngeal images. Int J Pattern Recognit Artif Intell 20(08):1187–1205 Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Integrating global and local analysis of color, texture and geometrical information for categorizing laryngeal images. Int J Pattern Recognit Artif Intell 20(08):1187–1205
54.
Zurück zum Zitat Verikas A, Gelzinis A, Valincius D et al (2007) Multiple feature sets based categorization of laryngeal images. Comp Methods Programs in Biomed 85(3):257–266 Published Verikas A, Gelzinis A, Valincius D et al (2007) Multiple feature sets based categorization of laryngeal images. Comp Methods Programs in Biomed 85(3):257–266 Published
55.
Zurück zum Zitat Verikas A, Gelzinis A, Bacauskiene M et al (2010) Combining image, voice, and the patient's questionnaire data to categorize laryngeal disorders. Artif Intell Med 49(1):43–50 PublishedPubMed Verikas A, Gelzinis A, Bacauskiene M et al (2010) Combining image, voice, and the patient's questionnaire data to categorize laryngeal disorders. Artif Intell Med 49(1):43–50 PublishedPubMed
56.
Zurück zum Zitat Bacauskiene M, Verikas A, Gelzinis A et al (2009) A feature selection technique for generation of classification committees and its application to categorization of laryngeal images. Pattern Recogn 42(5):645–654 Published Bacauskiene M, Verikas A, Gelzinis A et al (2009) A feature selection technique for generation of classification committees and its application to categorization of laryngeal images. Pattern Recogn 42(5):645–654 Published
57.
Zurück zum Zitat Kuo C-FJ, Wang P-C, Chu Y-H et al (2013) Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases. Comput Methods Prog Biomed 112(1):228–236 Published Kuo C-FJ, Wang P-C, Chu Y-H et al (2013) Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases. Comput Methods Prog Biomed 112(1):228–236 Published
58.
Zurück zum Zitat Turkmen H, Karsligil ME ve Kocak I, (2013). “Classification Of Vocal Fold Nodules And Cysts Based On Vascular Defects Of Vocal Folds”, In IEEE International Workshop on Machine Learning for Signal Processing, 22-25 September 2013, Southampton. Turkmen H, Karsligil ME ve Kocak I, (2013). “Classification Of Vocal Fold Nodules And Cysts Based On Vascular Defects Of Vocal Folds”, In IEEE International Workshop on Machine Learning for Signal Processing, 22-25 September 2013, Southampton.
59.
Zurück zum Zitat Barbalata C, Mattos LS (2016) Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Health Inform 20(1):322–332PubMed Barbalata C, Mattos LS (2016) Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Health Inform 20(1):322–332PubMed
60.
Zurück zum Zitat Moccia S et al (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502 Moccia S et al (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502
62.
Zurück zum Zitat Nanni L, Ghidoni S, & Brahnam S (2018). Ensemble of convolutional neural networks for bioimage classification. Appl Comp Inform. Nanni L, Ghidoni S, & Brahnam S (2018). Ensemble of convolutional neural networks for bioimage classification. Appl Comp Inform.
63.
Zurück zum Zitat Huang CC, Leu YS, Kuo CFJ et al (2014) Automatic recognizing of vocal fold disorders from glottis images Huang. Proc Instit Mech Eng Part H-J Eng Med 228(9):952–961 Published Huang CC, Leu YS, Kuo CFJ et al (2014) Automatic recognizing of vocal fold disorders from glottis images Huang. Proc Instit Mech Eng Part H-J Eng Med 228(9):952–961 Published
64.
Zurück zum Zitat Dittberner A, Rodner E, Ortmann W, Stadler J, Schmidt C, Petersen I et al (2016) Automated analysis of confocal laser endomicroscopy images to detect head and neck cancer. Head Neck 38(S1):E1419–E1426PubMed Dittberner A, Rodner E, Ortmann W, Stadler J, Schmidt C, Petersen I et al (2016) Automated analysis of confocal laser endomicroscopy images to detect head and neck cancer. Head Neck 38(S1):E1419–E1426PubMed
65.
Zurück zum Zitat Unger J, Hecker DJ, Kunduk M et al (2014) Quantifying Spatiotemporal Properties of Vocal Fold Dynamics Based on a Multiscale Analysis of Phonovibrograms. IEEE Trans Biomed Eng 61(9):2422–2433 PublishedPubMed Unger J, Hecker DJ, Kunduk M et al (2014) Quantifying Spatiotemporal Properties of Vocal Fold Dynamics Based on a Multiscale Analysis of Phonovibrograms. IEEE Trans Biomed Eng 61(9):2422–2433 PublishedPubMed
66.
Zurück zum Zitat Inwald EC, Doellinger M, Schuster M, Eysholdt U, Bohr C (2011) Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging. J Voice 25(5):576–590PubMed Inwald EC, Doellinger M, Schuster M, Eysholdt U, Bohr C (2011) Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging. J Voice 25(5):576–590PubMed
67.
Zurück zum Zitat Voigt D, Döllinger M, Braunschweig T et al (2010) Classification of functional voice disorders based on phonovibrograms. Artif Intell Med 49(1):51–59 PublishedPubMed Voigt D, Döllinger M, Braunschweig T et al (2010) Classification of functional voice disorders based on phonovibrograms. Artif Intell Med 49(1):51–59 PublishedPubMed
68.
Zurück zum Zitat Voigt D, Döllinger M, Yang A et al (2010) Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods. Comput Methods Prog Biomed 99(3):275–288. Published. Voigt D, Döllinger M, Yang A et al (2010) Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods. Comput Methods Prog Biomed 99(3):275–288. Published.
69.
Zurück zum Zitat Unger J, Lohscheller J, Reiter M, Eder K, Betz CS, Schuster M (2015) A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis. Cancer Res 75(1):31–39PubMed Unger J, Lohscheller J, Reiter M, Eder K, Betz CS, Schuster M (2015) A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis. Cancer Res 75(1):31–39PubMed
70.
Zurück zum Zitat Zorrilla AM, & Zapirain BG (2013). Vocal Folds Stroboscopic Image Processing for Otolaryngology. INTECH Open Access Publisher. Zorrilla AM, & Zapirain BG (2013). Vocal Folds Stroboscopic Image Processing for Otolaryngology. INTECH Open Access Publisher.
72.
Zurück zum Zitat Schuster M, Bergen T, Reiter M, Münzenmayer C, Friedl S, Wittenberg T (2012) Laryngoscopic image stitching for view enhancement and documentation–first experiences. Biomed Eng/Biomedizinische Technik 57(SI-1 Track-H):704–707 Schuster M, Bergen T, Reiter M, Münzenmayer C, Friedl S, Wittenberg T (2012) Laryngoscopic image stitching for view enhancement and documentation–first experiences. Biomed Eng/Biomedizinische Technik 57(SI-1 Track-H):704–707
73.
Zurück zum Zitat Moccia S, Penza V, Vanone GO, De Momi E, & Mattos LS (2016). Automatic workflow for narrow-band laryngeal video stitching. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1188-1191). IEEE. Moccia S, Penza V, Vanone GO, De Momi E, & Mattos LS (2016). Automatic workflow for narrow-band laryngeal video stitching. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1188-1191). IEEE.
74.
Zurück zum Zitat Moccia S, Vanone GO, De Momi E, Laborai A, Guastini L, Peretti G, Mattos LS (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Prog Biomed 158:21–30 Moccia S, Vanone GO, De Momi E, Laborai A, Guastini L, Peretti G, Mattos LS (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Prog Biomed 158:21–30
75.
Zurück zum Zitat Le Borgne W. (2006) Laryngeal Videostroboscopic Images: Normal and Pathologic Samples DVD-ROM – Audiobook Le Borgne W. (2006) Laryngeal Videostroboscopic Images: Normal and Pathologic Samples DVD-ROM – Audiobook
76.
Zurück zum Zitat Sun C, Han X, Li X, Zhang Y, Du X (2017) Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg 156(4):589–597PubMed Sun C, Han X, Li X, Zhang Y, Du X (2017) Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg 156(4):589–597PubMed
77.
Zurück zum Zitat Klimza H et al (2017) Narrow-band imaging (NBI) for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect. PLoS One 12(6):e0180590PubMedPubMedCentral Klimza H et al (2017) Narrow-band imaging (NBI) for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect. PLoS One 12(6):e0180590PubMedPubMedCentral
78.
Zurück zum Zitat Baki MM, Menys A, Atkinson D, Bassett P, Morley S, Beale T et al (2017) Feasibility of vocal fold abduction and adduction assessment using cine-MRI. Eur Radiol 27(2):598–606PubMed Baki MM, Menys A, Atkinson D, Bassett P, Morley S, Beale T et al (2017) Feasibility of vocal fold abduction and adduction assessment using cine-MRI. Eur Radiol 27(2):598–606PubMed
79.
Zurück zum Zitat Paquette CM, Manos DC, Psooy BJ (2012) Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics 32(3):721–740PubMed Paquette CM, Manos DC, Psooy BJ (2012) Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics 32(3):721–740PubMed
80.
Zurück zum Zitat Bresch E, Narayanan S (2009) Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images. IEEE Trans Med Imaging 28(3):323–338PubMedPubMedCentral Bresch E, Narayanan S (2009) Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images. IEEE Trans Med Imaging 28(3):323–338PubMedPubMedCentral
81.
Zurück zum Zitat Herbst CT (2019). Electroglottography–An Update. J Voice. Herbst CT (2019). Electroglottography–An Update. J Voice.
82.
Zurück zum Zitat Frauenrath T, Kob M (2007) A System for parallel Measurement of Glottis Opening and Larynx Position. Models and analysis of vocal emissions for biomedical applications. Biomed Signal Proc Control 4(3):221–228 1000-1003 Frauenrath T, Kob M (2007) A System for parallel Measurement of Glottis Opening and Larynx Position. Models and analysis of vocal emissions for biomedical applications. Biomed Signal Proc Control 4(3):221–228 1000-1003
83.
Zurück zum Zitat Tronchin L, Kob M, Guarnaccia C (2018) Spatial information on voice generation from a multi-channel electroglottograph. Appl Sci 8(9):1560 Tronchin L, Kob M, Guarnaccia C (2018) Spatial information on voice generation from a multi-channel electroglottograph. Appl Sci 8(9):1560
84.
Zurück zum Zitat Cooper, T., Dziegielewski, P. T., Singh, P., & Seemann, R. (2015). Acromegaly presenting with bilateral vocal fold immobility: case report and review. J Voice Cooper, T., Dziegielewski, P. T., Singh, P., & Seemann, R. (2015). Acromegaly presenting with bilateral vocal fold immobility: case report and review. J Voice
85.
Zurück zum Zitat Deniwar A, Kandil E, Randolph G (2015) Electrophysiological neural monitoring of the laryngeal nerves in thyroid surgery: review of the current literature. Gland Surg 4(5):368PubMedPubMedCentral Deniwar A, Kandil E, Randolph G (2015) Electrophysiological neural monitoring of the laryngeal nerves in thyroid surgery: review of the current literature. Gland Surg 4(5):368PubMedPubMedCentral
86.
Zurück zum Zitat Puram, S. V., Chow, H., Wu, C. W., Heaton, J. T., Kamani, D., Gorti, G., ..., & Dralle, H. (2016). Vocal cord paralysis predicted by neural monitoring electrophysiologic changes with recurrent laryngeal nerve compressive neuropraxic injury in a canine model. Head Neck, 38(S1). Puram, S. V., Chow, H., Wu, C. W., Heaton, J. T., Kamani, D., Gorti, G., ..., & Dralle, H. (2016). Vocal cord paralysis predicted by neural monitoring electrophysiologic changes with recurrent laryngeal nerve compressive neuropraxic injury in a canine model. Head Neck, 38(S1).
87.
Zurück zum Zitat Deshpande N, Peretti G, Mora F, Guastini L, Lee J, Barresi G et al (2018) Design and Study of a Next-Generation Computer-Assisted System for Transoral Laser Microsurgery. OTO Open 2(2):2473974X18773327PubMedPubMedCentral Deshpande N, Peretti G, Mora F, Guastini L, Lee J, Barresi G et al (2018) Design and Study of a Next-Generation Computer-Assisted System for Transoral Laser Microsurgery. OTO Open 2(2):2473974X18773327PubMedPubMedCentral
88.
Zurück zum Zitat Arens C, Piazza C, Andrea M, Dikkers FG, Gi RETP, Voigt-Zimmermann S, Peretti G (2016) Proposal for a descriptive guideline of vascular changes in lesions of the vocal folds by the committee on endoscopic laryngeal imaging of the European Laryngological Society. Eur Arch Otorhinolaryngol 273(5):1207–1214PubMed Arens C, Piazza C, Andrea M, Dikkers FG, Gi RETP, Voigt-Zimmermann S, Peretti G (2016) Proposal for a descriptive guideline of vascular changes in lesions of the vocal folds by the committee on endoscopic laryngeal imaging of the European Laryngological Society. Eur Arch Otorhinolaryngol 273(5):1207–1214PubMed
89.
Zurück zum Zitat Lau K, Wilkinson J, Moorthy R (2018) A web-based prediction score for head and neck cancer referrals. Clin Otolaryngol 43(4):1043–1049 Lau K, Wilkinson J, Moorthy R (2018) A web-based prediction score for head and neck cancer referrals. Clin Otolaryngol 43(4):1043–1049
90.
Zurück zum Zitat Yamauchi A, Yokonishi H, Imagawa H, Sakakibara KI, Nito T, Tayama N, Yamasoba T (2016) Quantification of vocal fold vibration in various laryngeal disorders using high-speed digital imaging. J Voice 30(2):205–214PubMed Yamauchi A, Yokonishi H, Imagawa H, Sakakibara KI, Nito T, Tayama N, Yamasoba T (2016) Quantification of vocal fold vibration in various laryngeal disorders using high-speed digital imaging. J Voice 30(2):205–214PubMed
91.
Zurück zum Zitat Yamauchi A, Yokonishi H, Imagawa H et al (2015) Quantitative analysis of digital videokymography: a preliminary study on age- and gender-related difference of vocal fold vibration in normal speakers. J Voice 29:109–119PubMed Yamauchi A, Yokonishi H, Imagawa H et al (2015) Quantitative analysis of digital videokymography: a preliminary study on age- and gender-related difference of vocal fold vibration in normal speakers. J Voice 29:109–119PubMed
92.
Zurück zum Zitat Yamauchi A, Imagawa H, Sakakibara K-I et al (2014) Characteristics of vocal fold vibrations in vocally healthy subjects: analysis with multi-line kymography. J Speech Lang Hear Res 57:648–657 Yamauchi A, Imagawa H, Sakakibara K-I et al (2014) Characteristics of vocal fold vibrations in vocally healthy subjects: analysis with multi-line kymography. J Speech Lang Hear Res 57:648–657
93.
Zurück zum Zitat Tang SS, Thibeault SL (2017) Timing of voice therapy: a primary investigation of voice outcomes for surgical benign vocal fold lesion patients. J Voice 31(1):129–1e1PubMed Tang SS, Thibeault SL (2017) Timing of voice therapy: a primary investigation of voice outcomes for surgical benign vocal fold lesion patients. J Voice 31(1):129–1e1PubMed
Metadaten
Titel
Advanced computing solutions for analysis of laryngeal disorders
verfasst von
H. Irem Turkmen
M. Elif Karsligil
Publikationsdatum
06.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 11/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-02031-9

Weitere Artikel der Ausgabe 11/2019

Medical & Biological Engineering & Computing 11/2019 Zur Ausgabe

Premium Partner