Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 11/2019

14.09.2019 | Original Article

Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Enhanced external counterpulsation (EECP) is a noninvasive treatment method for coronary artery atherosclerosis that acts on the vascular endothelial cells. The intracoronary hemodynamic parameters that influence long-term treatment effect are the fundamental factors for the inhibition of intimal hyperplasia, which cannot be measured in real time. In order to optimize the long-term treatment effect of coronary heart disease, it is necessary to establish a method for quantified calculation of intracoronary hemodynamic parameters during counterpulsation to research the long-term hemodynamic mechanism of EECP. A geometric multiscale model coupled by the zero-dimensional (0D) lumped parameter model and the three-dimensional (3D) model of narrow coronary artery was established for the simulation of intracoronary hemodynamic environment. The 3D model was used to calculate the hemodynamic parameters such as wall shear stress (WSS) and oscillatory shear index (OSI), while the 0D model was used to simulate the blood circulatory system. Sequential pressure was applied to calves, thighs, and buttocks module in 0D model with the consideration of vessel collapse. Hemodynamic performance was compared with clinical reports to verify the effectiveness of the method. There were significant increases of the diastolic blood pressure (DBP), coronary flow, and the area-averaged WSS during application of EECP, while OSI behind stenosis has some decrease. The waveforms of coronary flow has good similarity with the clinical measured waveforms, and the differences between calculated mean arterial pressures (MAPs) and clinical measurements were within 1%. The fundamental factor in the cure of coronary heart disease by EECP is the improvement of WSS and the decrease of OSI. Comparing with the clinical reports, the immediate hemodynamic changes demonstrate the effectiveness of model. Intracoronary hemodynamic parameters during EECP could be acquired and the method could be used to simulate the long-term treatment effect of EECP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ruangkanchanasetr P, Mahanonda N, Raungratanaamporn O, Ruckpanich P, Kitiyakara C, Chaiprasert A, Adirekkiat S, Punpanich D, Vanavanan S, Chittamma A, Supaporn T (2013) Effect of enhanced external counterpulsation treatment on renal function in cardiac patients[J]. BMC Nephrol 14:193PubMedPubMedCentral Ruangkanchanasetr P, Mahanonda N, Raungratanaamporn O, Ruckpanich P, Kitiyakara C, Chaiprasert A, Adirekkiat S, Punpanich D, Vanavanan S, Chittamma A, Supaporn T (2013) Effect of enhanced external counterpulsation treatment on renal function in cardiac patients[J]. BMC Nephrol 14:193PubMedPubMedCentral
2.
Zurück zum Zitat Xiaoxia Q, Yanye D, Dandong W et al (2016) Does enhanced external counterpulsation (EECP) significantly affect myocardial perfusion?: a systematic review & meta-analysis[J]. PLoS One 11(4):e0151822 Xiaoxia Q, Yanye D, Dandong W et al (2016) Does enhanced external counterpulsation (EECP) significantly affect myocardial perfusion?: a systematic review & meta-analysis[J]. PLoS One 11(4):e0151822
3.
Zurück zum Zitat Sharma U, Ramsey HK, Tak T (2013) The role of enhanced external counter pulsation therapy in clinical practice[J]. Clin Med Res 11(4):226–232PubMedPubMedCentral Sharma U, Ramsey HK, Tak T (2013) The role of enhanced external counter pulsation therapy in clinical practice[J]. Clin Med Res 11(4):226–232PubMedPubMedCentral
4.
Zurück zum Zitat Braith RW, Casey DP, Beck DT (2012) Enhanced external counterpulsation for ischemic heart disease: a look behind the curtain[J]. Exerc Sport Sci Rev 40(3):145–152PubMedPubMedCentral Braith RW, Casey DP, Beck DT (2012) Enhanced external counterpulsation for ischemic heart disease: a look behind the curtain[J]. Exerc Sport Sci Rev 40(3):145–152PubMedPubMedCentral
5.
Zurück zum Zitat Wu G, Du Z, Hu C et al (2006) Angiogenic effects of long-term enhanced external counterpulsation in a dog model of myocardial infarction[J]. Am J Physiol Heart Circ Physiol 290(1):248–254 Wu G, Du Z, Hu C et al (2006) Angiogenic effects of long-term enhanced external counterpulsation in a dog model of myocardial infarction[J]. Am J Physiol Heart Circ Physiol 290(1):248–254
6.
Zurück zum Zitat Daculsi R, Grellier M, Rémy M, Bareille R, Pierron D, Fernandez P, Bordenave L (2008) Unusual transduction response of progenitor-derived and mature endothelial cells exposed to laminar pulsatile shear stress[J]. J Biomech 41(12):2781–2785PubMed Daculsi R, Grellier M, Rémy M, Bareille R, Pierron D, Fernandez P, Bordenave L (2008) Unusual transduction response of progenitor-derived and mature endothelial cells exposed to laminar pulsatile shear stress[J]. J Biomech 41(12):2781–2785PubMed
8.
Zurück zum Zitat Zhang Y, He X, Chen X, Ma H, Liu D, Luo J, du Z, Jin Y, Xiong Y, He J, Fang D, Wang K, Lawson WE, Hui JCK, Zheng Z, Wu G (2007) Enhanced external counterpulsation inhibits intimal hyperplasia by modifying shear stress responsive gene expression in hypercholesterolemic pigs[J]. Circulation 116(5):526–534PubMed Zhang Y, He X, Chen X, Ma H, Liu D, Luo J, du Z, Jin Y, Xiong Y, He J, Fang D, Wang K, Lawson WE, Hui JCK, Zheng Z, Wu G (2007) Enhanced external counterpulsation inhibits intimal hyperplasia by modifying shear stress responsive gene expression in hypercholesterolemic pigs[J]. Circulation 116(5):526–534PubMed
9.
Zurück zum Zitat Ozawa ET, Bottom KE, Xiao X, Kamm RD (2001) Numerical simulation of enhanced external counterpulsation[J]. Ann Biomed Eng 29(4):284–297PubMed Ozawa ET, Bottom KE, Xiao X, Kamm RD (2001) Numerical simulation of enhanced external counterpulsation[J]. Ann Biomed Eng 29(4):284–297PubMed
10.
Zurück zum Zitat Bai J, Wu D, Zhang J (1994) A simulation study of external counterpulsation[J]. Comput Biol Med 24(2):145–156PubMed Bai J, Wu D, Zhang J (1994) A simulation study of external counterpulsation[J]. Comput Biol Med 24(2):145–156PubMed
11.
Zurück zum Zitat Bai J, Ying K, Jaron D (1992) Cardiovascular responses to external counterpulsation: a computer simulation[J]. Med Biol Eng Comput 30(3):317–323PubMed Bai J, Ying K, Jaron D (1992) Cardiovascular responses to external counterpulsation: a computer simulation[J]. Med Biol Eng Comput 30(3):317–323PubMed
12.
Zurück zum Zitat Du JH, Wu CL, Zheng ZS et al (2006) Numerical simulation of pulsatile blood flow through asymmetric arterial stenoses under EECP[J]. J Hydrodyn 18(3):251–256 Du JH, Wu CL, Zheng ZS et al (2006) Numerical simulation of pulsatile blood flow through asymmetric arterial stenoses under EECP[J]. J Hydrodyn 18(3):251–256
13.
Zurück zum Zitat Du J, Wang L (2015) Enhanced external counterpulsation treatment may intervene the advanced atherosclerotic plaque progression by inducing the variations of mechanical factors: a 3D FSI study based on in vivo animal experiment[J]. Mol Cell Biochem 12(4):249–263 Du J, Wang L (2015) Enhanced external counterpulsation treatment may intervene the advanced atherosclerotic plaque progression by inducing the variations of mechanical factors: a 3D FSI study based on in vivo animal experiment[J]. Mol Cell Biochem 12(4):249–263
14.
Zurück zum Zitat Gerber B, Singh JL, Zhang Y, Liou W (2018) A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity[J]. Comput Biol Med 102:86–94PubMed Gerber B, Singh JL, Zhang Y, Liou W (2018) A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity[J]. Comput Biol Med 102:86–94PubMed
15.
Zurück zum Zitat Mynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method[J]. Commun Numer Methods Eng 24(5):367–417 Mynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method[J]. Commun Numer Methods Eng 24(5):367–417
16.
Zurück zum Zitat Liang F, Takagi S, Himeno R, Liu H (2009) Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses[J]. Med Biol Eng Comput 47(7):743–755PubMed Liang F, Takagi S, Himeno R, Liu H (2009) Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses[J]. Med Biol Eng Comput 47(7):743–755PubMed
17.
Zurück zum Zitat Liang F, Oshima M, Huang H, Liu H, Takagi S (2015) Numerical study of cerebroarterial hemodynamic changes following carotid artery operation: a comparison between multiscale modeling and stand-alone three-dimensional modeling[J]. J Biomech Eng 137(10):101011PubMed Liang F, Oshima M, Huang H, Liu H, Takagi S (2015) Numerical study of cerebroarterial hemodynamic changes following carotid artery operation: a comparison between multiscale modeling and stand-alone three-dimensional modeling[J]. J Biomech Eng 137(10):101011PubMed
18.
Zurück zum Zitat Jaron D, Moore TW, Bai J (1988) Cardiovascular responses to acceleration stress: a computer simulation[J]. Proc IEEE 76(6):700–707 Jaron D, Moore TW, Bai J (1988) Cardiovascular responses to acceleration stress: a computer simulation[J]. Proc IEEE 76(6):700–707
19.
Zurück zum Zitat Zhang M, Anzai H, Chopard B et al (2016) Towards the patient-specific design of flow diverters made from helix-like wires: an optimization study[J]. Biomed Eng Online 15(2):371–382 Zhang M, Anzai H, Chopard B et al (2016) Towards the patient-specific design of flow diverters made from helix-like wires: an optimization study[J]. Biomed Eng Online 15(2):371–382
20.
Zurück zum Zitat Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis[J]. J Am Coll Cardiol 61(22):2233–2241PubMed Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis[J]. J Am Coll Cardiol 61(22):2233–2241PubMed
21.
Zurück zum Zitat Li B, Wang W, Mao B et al (2018) A method to personalize the lumped parameter model of coronary artery[J]. Int J Comput Methods 16(3):1842004 Li B, Wang W, Mao B et al (2018) A method to personalize the lumped parameter model of coronary artery[J]. Int J Comput Methods 16(3):1842004
22.
Zurück zum Zitat Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries[J]. Ann Biomed Eng 38(10):3195–3209PubMed Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries[J]. Ann Biomed Eng 38(10):3195–3209PubMed
23.
Zurück zum Zitat Zheng D, Yin M, Fan X et al (2018) A patient-specific lumped-parameter model of coronary circulation[J]. Sci Rep 8:874 Zheng D, Yin M, Fan X et al (2018) A patient-specific lumped-parameter model of coronary circulation[J]. Sci Rep 8:874
24.
Zurück zum Zitat Zhao X, Liu Y, Li L, Wang W, Xie J, Zhao Z (2015) Hemodynamics of the string phenomenon in the internal thoracic artery grafted to the left anterior descending artery with moderate stenosis[J]. J Biomech 49(7):983–991PubMed Zhao X, Liu Y, Li L, Wang W, Xie J, Zhao Z (2015) Hemodynamics of the string phenomenon in the internal thoracic artery grafted to the left anterior descending artery with moderate stenosis[J]. J Biomech 49(7):983–991PubMed
25.
Zurück zum Zitat Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and heir ratio in the excised, supported canine left ventricle[J]. Circ Res 35(1):117–126PubMed Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and heir ratio in the excised, supported canine left ventricle[J]. Circ Res 35(1):117–126PubMed
26.
Zurück zum Zitat Stergiopulos N, Meister JJ, Westerhof N (1996) Determinants of stroke volume and systolic and diastolic aortic pressure[J]. Am J Physiol 270(6):2050–2059 Stergiopulos N, Meister JJ, Westerhof N (1996) Determinants of stroke volume and systolic and diastolic aortic pressure[J]. Am J Physiol 270(6):2050–2059
27.
Zurück zum Zitat Bottom KE (1999) A numerical model of cardiovascular fluid mechanics during external cardiac assist[D]. Massachusetts Institute of Technology, Cambridge, pp 1–127 Bottom KE (1999) A numerical model of cardiovascular fluid mechanics during external cardiac assist[D]. Massachusetts Institute of Technology, Cambridge, pp 1–127
28.
Zurück zum Zitat Li B, Chen S, Qi X, Wang W, Mao B, du J, Li X, Liu Y (2018) The numerical study on specialized treatment strategies of enhanced external counterpulsation for cardiovascular and cerebrovascular disease[J]. Med Biol Eng Comput 56(11):1959–1971PubMed Li B, Chen S, Qi X, Wang W, Mao B, du J, Li X, Liu Y (2018) The numerical study on specialized treatment strategies of enhanced external counterpulsation for cardiovascular and cerebrovascular disease[J]. Med Biol Eng Comput 56(11):1959–1971PubMed
29.
Zurück zum Zitat Chen DY, Tong CH, Liu KL (2012) The method of tangent modulus factor for the design of external pressure vessels[J]. Adv Mater Res 479-481:1578–1584 Chen DY, Tong CH, Liu KL (2012) The method of tangent modulus factor for the design of external pressure vessels[J]. Adv Mater Res 479-481:1578–1584
30.
Zurück zum Zitat Callum KG, Thomas ML, Browse NL (1983) A definition of arteriomegaly and the size of arteries supplying the lower limbs[J]. Br J Surg 70(9):524–529PubMed Callum KG, Thomas ML, Browse NL (1983) A definition of arteriomegaly and the size of arteries supplying the lower limbs[J]. Br J Surg 70(9):524–529PubMed
31.
Zurück zum Zitat Manning KB (2012) Biofluid mechanics: the human circulation (second edition)[J]. Cardiovasc Eng Technol 3(4):351–352 Manning KB (2012) Biofluid mechanics: the human circulation (second edition)[J]. Cardiovasc Eng Technol 3(4):351–352
32.
Zurück zum Zitat Qiao A, Zhang Z (2014) Numerical simulation of vertebral artery stenosis treated with different stents[J]. J Biomech Eng 136(4):1274–1283 Qiao A, Zhang Z (2014) Numerical simulation of vertebral artery stenosis treated with different stents[J]. J Biomech Eng 136(4):1274–1283
33.
Zurück zum Zitat Michaels AD, Tacy T, Teitel D, Shapiro M, Grossman W (2009) Invasive left ventricular energetics during enhanced external counterpulsation[J]. Am J Ther 16(3):239–246PubMed Michaels AD, Tacy T, Teitel D, Shapiro M, Grossman W (2009) Invasive left ventricular energetics during enhanced external counterpulsation[J]. Am J Ther 16(3):239–246PubMed
34.
Zurück zum Zitat Torii R, Wood NB, Hughes AD, Thom SA, Aguado-Sierra J, Davies JE, Francis DP, Parker KH, Xu XY (2007) A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model[J]. J Biomech 40(11):2501–2509PubMed Torii R, Wood NB, Hughes AD, Thom SA, Aguado-Sierra J, Davies JE, Francis DP, Parker KH, Xu XY (2007) A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model[J]. J Biomech 40(11):2501–2509PubMed
35.
Zurück zum Zitat Davies PF, Civelek M (2011) Endoplasmic reticulum stress, redox, and a proinflammatory environment in athero-susceptible endothelium in vivo at sites of complex hemodynamic shear stress[J]. Antioxid Redox Signal 15(5):1427–1432PubMedPubMedCentral Davies PF, Civelek M (2011) Endoplasmic reticulum stress, redox, and a proinflammatory environment in athero-susceptible endothelium in vivo at sites of complex hemodynamic shear stress[J]. Antioxid Redox Signal 15(5):1427–1432PubMedPubMedCentral
36.
Zurück zum Zitat Speelman L, Teng Z, Nederveen AJ et al (2016) MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment[J]. Thromb Haemost 115(03):493–500PubMed Speelman L, Teng Z, Nederveen AJ et al (2016) MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment[J]. Thromb Haemost 115(03):493–500PubMed
37.
Zurück zum Zitat Ladisa JF, Bowers M, Harmann L et al (2010) Time-efficient patient-specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden[J]. Med Phys 37(2):784–792PubMedPubMedCentral Ladisa JF, Bowers M, Harmann L et al (2010) Time-efficient patient-specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden[J]. Med Phys 37(2):784–792PubMedPubMedCentral
38.
Zurück zum Zitat Mori D, Hayasaka T, Yamaguchi T (2002) Modeling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow[J]. JSME Int J Ser C-Mech Syst Mach Elem Manuf 45(4):997–1002 Mori D, Hayasaka T, Yamaguchi T (2002) Modeling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow[J]. JSME Int J Ser C-Mech Syst Mach Elem Manuf 45(4):997–1002
39.
Zurück zum Zitat Michaels AD, Accad M, Ports TA, Grossman W (2002) Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation[J]. Circulation 106(10):1237–1242PubMed Michaels AD, Accad M, Ports TA, Grossman W (2002) Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation[J]. Circulation 106(10):1237–1242PubMed
40.
Zurück zum Zitat Lin W, Xiong L, Han J, Leung H, Leung T, Soo Y, Chen X, Wong KSL (2014) Increasing pressure of external counterpulsation augments blood pressure but not cerebral blood flow velocity in ischemic stroke[J]. J Clin Neurosci 21(7):1148–1152PubMed Lin W, Xiong L, Han J, Leung H, Leung T, Soo Y, Chen X, Wong KSL (2014) Increasing pressure of external counterpulsation augments blood pressure but not cerebral blood flow velocity in ischemic stroke[J]. J Clin Neurosci 21(7):1148–1152PubMed
41.
Zurück zum Zitat Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, Ritter R, Balzer J̈, Scheler C, Schaper W, Schmitz-Rixen T (2004) Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb[J]. Arterioscler Thromb Vasc Biol 24(9):1664–1668PubMed Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, Ritter R, Balzer J̈, Scheler C, Schaper W, Schmitz-Rixen T (2004) Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb[J]. Arterioscler Thromb Vasc Biol 24(9):1664–1668PubMed
42.
Zurück zum Zitat Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis[J]. Jama 282(21):2035–2042PubMed Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis[J]. Jama 282(21):2035–2042PubMed
43.
Zurück zum Zitat Eshtehardi P, Mcdaniel MC, Suo J et al (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease[J]. J Am Heart Assoc 1(4):e002543PubMedPubMedCentral Eshtehardi P, Mcdaniel MC, Suo J et al (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease[J]. J Am Heart Assoc 1(4):e002543PubMedPubMedCentral
44.
Zurück zum Zitat Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL, PREDICTION Investigators (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics the PREDICTION study[J]. Circulation 126(2):172–181PubMed Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL, PREDICTION Investigators (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics the PREDICTION study[J]. Circulation 126(2):172–181PubMed
45.
Zurück zum Zitat Samady H, Eshtehardi P, Mcdaniel MC et al (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease[J]. Circulation 124(7):779–788PubMed Samady H, Eshtehardi P, Mcdaniel MC et al (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease[J]. Circulation 124(7):779–788PubMed
46.
Zurück zum Zitat Wentzel JJ, Chatzizisis YS, Gijsen FJH, Giannoglou GD, Feldman CL, Stone PH (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions[J]. Cardiovasc Res 96(2):234–243PubMed Wentzel JJ, Chatzizisis YS, Gijsen FJH, Giannoglou GD, Feldman CL, Stone PH (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions[J]. Cardiovasc Res 96(2):234–243PubMed
47.
Zurück zum Zitat Ge XY, Yin ZF, Fan YQ, Vassilevski Y, Liang F (2018) A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow[J]. Int J Numer Meth Biomed 34(10):e3123 Ge XY, Yin ZF, Fan YQ, Vassilevski Y, Liang F (2018) A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow[J]. Int J Numer Meth Biomed 34(10):e3123
Metadaten
Titel
Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation
Publikationsdatum
14.09.2019
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 11/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-02028-4

Weitere Artikel der Ausgabe 11/2019

Medical & Biological Engineering & Computing 11/2019 Zur Ausgabe

Premium Partner