Skip to main content

2020 | OriginalPaper | Buchkapitel

Aerodynamic Shape Optimization for Delaying Dynamic Stall of Airfoils by Regression Kriging

verfasst von : Vishal Raul, Leifur Leifsson, Slawomir Koziel

Erschienen in: Computational Science – ICCS 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phenomenon of dynamic stall produce adverse aerodynamic loading which can adversely affect the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides an effective approach for delaying and mitigating dynamic stall characteristics without the addition of auxiliary system. ASO, however, requires multiple evaluations time-consuming computational fluid dynamics models. Metamodel-based optimization (MBO) provides an efficient approach to alleviate the computational burden. In this study, the MBO approach is utilized for the mitigation of dynamic stall characteristics while delaying dynamic stall angle of the flow past wind turbine airfoils. The regression Kriging metamodeling technique is used to approximate the objective and constrained functions. The airfoil shape design variables are described with six PARSEC parameters. A total of 60 initial samples are used to construct the metamodel, which is further refined with 20 infill points using expected improvement. The metamodel is validated with the normalized root mean square error based on 20 test data samples. The refined metamodel is used to search for the optimal design using a multi-start gradient-based method. The results show that an optimal design with a \(3^\circ \) delay in dynamic stall angle as well a reduction in the severity of pitching moment coefficients can be obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Buchner, A., Lohry, M., Martinelli, L., Soria, J., Smits, A.: Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Eng. Ind. Aerodyn. 146, 163–171 (2015)CrossRef Buchner, A., Lohry, M., Martinelli, L., Soria, J., Smits, A.: Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Eng. Ind. Aerodyn. 146, 163–171 (2015)CrossRef
3.
Zurück zum Zitat Chen, G., Xiong, Q., Morris, P.J., Paterson, E.G., Sergeev, A., Wang, Y.: Openfoam for computational fluid dynamics. Not. AMS 61(4), 354–363 (2014)MathSciNetMATH Chen, G., Xiong, Q., Morris, P.J., Paterson, E.G., Sergeev, A., Wang, Y.: Openfoam for computational fluid dynamics. Not. AMS 61(4), 354–363 (2014)MathSciNetMATH
4.
Zurück zum Zitat Economon, T., Palacios, F., Alonso, J.: Unsteady aerodynamic design on unstructured meshes with sliding interfaces. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 632 (2013) Economon, T., Palacios, F., Alonso, J.: Unsteady aerodynamic design on unstructured meshes with sliding interfaces. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 632 (2013)
5.
Zurück zum Zitat Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Great Britain (2008)CrossRef Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Great Britain (2008)CrossRef
6.
Zurück zum Zitat Harris, F.D., Pruyn, R.R.: Blade stall half fact, half fiction. J. Am. Helicopter Soc. 13(2), 27–48 (1968)CrossRef Harris, F.D., Pruyn, R.R.: Blade stall half fact, half fiction. J. Am. Helicopter Soc. 13(2), 27–48 (1968)CrossRef
7.
Zurück zum Zitat Forrester, A.I.J., Keane, A.J., Bressloff, N.W.: Design and analysis of “Noisy” computer experiments. AIAA J. 44(10), 2331–2339 (2006)CrossRef Forrester, A.I.J., Keane, A.J., Bressloff, N.W.: Design and analysis of “Noisy” computer experiments. AIAA J. 44(10), 2331–2339 (2006)CrossRef
8.
Zurück zum Zitat Laurenceau, J., Meaux, M.: Comparison of gradient and response surface based optimization frameworks using adjoint method. In: 4th AIAA Multidisciplinary Design Optimization Specialists Conference, p. 1889 (2008) Laurenceau, J., Meaux, M.: Comparison of gradient and response surface based optimization frameworks using adjoint method. In: 4th AIAA Multidisciplinary Design Optimization Specialists Conference, p. 1889 (2008)
9.
Zurück zum Zitat Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)CrossRef Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)CrossRef
10.
Zurück zum Zitat Lee, T., Gerontakos, P.: Dynamic stall flow control via a trailing-edge flap. AIAA J. 44(3), 469–480 (2006)CrossRef Lee, T., Gerontakos, P.: Dynamic stall flow control via a trailing-edge flap. AIAA J. 44(3), 469–480 (2006)CrossRef
11.
Zurück zum Zitat Ma, N., et al.: Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy 150, 236–252 (2018)CrossRef Ma, N., et al.: Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy 150, 236–252 (2018)CrossRef
12.
Zurück zum Zitat Mani, K., Lockwood, B.A., Mavriplis, D.J.: Adjoint-based unsteady airfoil design optimization with application to dynamic stall. In: American Helicopter Society 68th Annual Forum Proceedings, vol. 68. American Helicopter Society Washington, DC (2012) Mani, K., Lockwood, B.A., Mavriplis, D.J.: Adjoint-based unsteady airfoil design optimization with application to dynamic stall. In: American Helicopter Society 68th Annual Forum Proceedings, vol. 68. American Helicopter Society Washington, DC (2012)
13.
Zurück zum Zitat McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)CrossRef McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)CrossRef
14.
Zurück zum Zitat Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef
15.
Zurück zum Zitat Müller-Vahl, H.F., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Dynamic stall control via adaptive blowing. Renew. Energy 97, 47–64 (2016)CrossRef Müller-Vahl, H.F., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Dynamic stall control via adaptive blowing. Renew. Energy 97, 47–64 (2016)CrossRef
16.
Zurück zum Zitat Nadarajah, S.K., Jameson, A.: Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint method. AIAA J. 45(7), 1478–1491 (2007)CrossRef Nadarajah, S.K., Jameson, A.: Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint method. AIAA J. 45(7), 1478–1491 (2007)CrossRef
17.
Zurück zum Zitat Palacios, F., et al.: Stanford university unstructured (SU 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 287 (2013) Palacios, F., et al.: Stanford university unstructured (SU 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 287 (2013)
18.
Zurück zum Zitat Roy, C.J.: Grid convergence error analysis for mixed-order numerical schemes. AIAA J. 41(4), 595–604 (2003)CrossRef Roy, C.J.: Grid convergence error analysis for mixed-order numerical schemes. AIAA J. 41(4), 595–604 (2003)CrossRef
19.
Zurück zum Zitat Simpson, T.W., Poplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17(2), 129–150 (2001)CrossRef Simpson, T.W., Poplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17(2), 129–150 (2001)CrossRef
20.
Zurück zum Zitat Sobieczky, H.: Parametric airfoils and wings. In: Recent Development of Aerodynamic Design Methodologies, pp. 71–87. Vieweg+Teubner Verlag, Wiesbaden (1999) Sobieczky, H.: Parametric airfoils and wings. In: Recent Development of Aerodynamic Design Methodologies, pp. 71–87. Vieweg+Teubner Verlag, Wiesbaden (1999)
21.
Zurück zum Zitat Virtanen, P., et al.: SciPy 1.0-fundamental algorithms for scientific computing in python. arXiv preprint arXiv:1907.10121 (2019) Virtanen, P., et al.: SciPy 1.0-fundamental algorithms for scientific computing in python. arXiv preprint arXiv:​1907.​10121 (2019)
22.
Zurück zum Zitat Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2006)CrossRef Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2006)CrossRef
23.
Zurück zum Zitat Wang, Q., Zhao, Q.: Rotor airfoil profile optimization for alleviating dynamic stall characteristics. Aerosp. Sci. Technol. 72, 502–515 (2018)CrossRef Wang, Q., Zhao, Q.: Rotor airfoil profile optimization for alleviating dynamic stall characteristics. Aerosp. Sci. Technol. 72, 502–515 (2018)CrossRef
24.
Zurück zum Zitat Wang, Q., Zhao, Q., Wu, Q.: Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil. Chin. J. Aeronaut. 28(2), 346–356 (2015)CrossRef Wang, Q., Zhao, Q., Wu, Q.: Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil. Chin. J. Aeronaut. 28(2), 346–356 (2015)CrossRef
25.
Zurück zum Zitat Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low reynolds number flow around oscillating airfoils. Comput. Fluids 39(9), 1529–1541 (2010)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low reynolds number flow around oscillating airfoils. Comput. Fluids 39(9), 1529–1541 (2010)CrossRef
26.
Zurück zum Zitat Wong, T., O Malley, J., O Brien, D.: Investigation of effect of dynamic stall and its alleviation on helicopter performance and loads. In: Annual Forum Proceedings-American Helicopter Society, vol. 62, no. 3, p. 1749 (2006) Wong, T., O Malley, J., O Brien, D.: Investigation of effect of dynamic stall and its alleviation on helicopter performance and loads. In: Annual Forum Proceedings-American Helicopter Society, vol. 62, no. 3, p. 1749 (2006)
27.
Zurück zum Zitat Yu, Y.H., Lee, S., McAlister, K.W., Tung, C., Wang, C.M.: Dynamic stall control for advanced rotorcraft application. AIAA J. 33(2), 289–295 (1995)CrossRef Yu, Y.H., Lee, S., McAlister, K.W., Tung, C., Wang, C.M.: Dynamic stall control for advanced rotorcraft application. AIAA J. 33(2), 289–295 (1995)CrossRef
28.
Zurück zum Zitat Zhao, G., Zhao, Q.: Dynamic stall control optimization of rotor airfoil via variable droop leading-edge. Aerosp. Sci. Technol. 43, 406–414 (2015)CrossRef Zhao, G., Zhao, Q.: Dynamic stall control optimization of rotor airfoil via variable droop leading-edge. Aerosp. Sci. Technol. 43, 406–414 (2015)CrossRef
Metadaten
Titel
Aerodynamic Shape Optimization for Delaying Dynamic Stall of Airfoils by Regression Kriging
verfasst von
Vishal Raul
Leifur Leifsson
Slawomir Koziel
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-50426-7_5