Skip to main content

2020 | OriginalPaper | Buchkapitel

9. An 802.15.4 IR-UWB Transmitter SoC with Adaptive-FBB-Based Channel Selection and Programmable Pulse Shape

verfasst von : David Bol, Guerric de Streel

Erschienen in: The Fourth Terminal

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we explore the use of adaptive back biasing to tune RF characteristics in wireless transmitters for ultra-low-power operation. To this end, we design an 802.15.4 impulse-radio (IR) UWB transmitter in 28 nm FD-SOI where back biasing is used to tune (1) the RF carrier frequency to the desired channel and (2) the RF output power to meet the spectral regulations. The transmitter is based on a digital PLL-free architecture for frequency synthesis with a pulse-shaping digital power amplifier. These architectural features combined with the FD-SOI capability to operate the transmitter at ultra-low-voltage (0.55 V) up to 4.5 GHz enable state-of-the art efficiency (2.6%) and extremely low energy per bit (≪1 nJ/bit).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Bol, G. de Streel, D. Flandre, Can we connect trillions of IoT sensors in a sustainable way? A technology/circuit perspective, in IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2015), pp. 1–3 D. Bol, G. de Streel, D. Flandre, Can we connect trillions of IoT sensors in a sustainable way? A technology/circuit perspective, in IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2015), pp. 1–3
2.
Zurück zum Zitat S. Jeong et al., Always-on 12-nW acoustic sensing and object recognition microsystem for unattended ground sensor nodes. IEEE J. Solid-State Circuits 35(1), 261–274 (2018)CrossRef S. Jeong et al., Always-on 12-nW acoustic sensing and object recognition microsystem for unattended ground sensor nodes. IEEE J. Solid-State Circuits 35(1), 261–274 (2018)CrossRef
3.
Zurück zum Zitat N. Couniot, G. de Streel, F. Botman, A. Kuti Lusala, D. Flandre, D. Bol, A 65 nm 0.5 V DPS CMOS image sensor with 17 pJ/frame.pixel and 42 dB dynamic range for ultra-low-power SoCs. IEEE J. Solid-State Circuits 50(12), 2419–2430 (2015) N. Couniot, G. de Streel, F. Botman, A. Kuti Lusala, D. Flandre, D. Bol, A 65 nm 0.5 V DPS CMOS image sensor with 17 pJ/frame.pixel and 42 dB dynamic range for ultra-low-power SoCs. IEEE J. Solid-State Circuits 50(12), 2419–2430 (2015)
4.
Zurück zum Zitat P. Harpe, H. Gao, R. van Dommele, E. Cantatore, A. van Roermund, A 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid-State Circuits 51(1), 240–248 (2016) P. Harpe, H. Gao, R. van Dommele, E. Cantatore, A. van Roermund, A 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid-State Circuits 51(1), 240–248 (2016)
5.
Zurück zum Zitat D. Bol, “Ultra-low-power wireless communications for IoT smart sensors”, invited talk in the “Sensors and Energy Harvesting” tutorial of IEEE European Solid-State Circuits Conference (2018) D. Bol, “Ultra-low-power wireless communications for IoT smart sensors”, invited talk in the “Sensors and Energy Harvesting” tutorial of IEEE European Solid-State Circuits Conference (2018)
6.
Zurück zum Zitat Y.-H. Liu, A 3.7mW-RX 4.4mW-TX fully integrated Bluetooth low-energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS, in Proceedings of IEEE International Solid-State Circuit Conference (2017), pp. 236–237 Y.-H. Liu, A 3.7mW-RX 4.4mW-TX fully integrated Bluetooth low-energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS, in Proceedings of IEEE International Solid-State Circuit Conference (2017), pp. 236–237
7.
Zurück zum Zitat R. Dekimpe, P. Xu, M. Schramme, D. Flandre, D. Bol, A battery-less BLE IoT motion detector supplied by 2.45-GHz wireless power transfer, in Proceedings of IEEE Power and Timing Modelling Symposium (2018), 8p. R. Dekimpe, P. Xu, M. Schramme, D. Flandre, D. Bol, A battery-less BLE IoT motion detector supplied by 2.45-GHz wireless power transfer, in Proceedings of IEEE Power and Timing Modelling Symposium (2018), 8p.
8.
Zurück zum Zitat D. Bol, “Ultra-Low-Power SoCs for Local Sensor Data Processing”, invited talk in the forum “Intelligent Energy-Efficient Systems at the Edge of IoT” of IEEE International Solid-State Circuits Conference (2018) D. Bol, “Ultra-Low-Power SoCs for Local Sensor Data Processing”, invited talk in the forum “Intelligent Energy-Efficient Systems at the Edge of IoT” of IEEE International Solid-State Circuits Conference (2018)
9.
Zurück zum Zitat D. Bol, M. Schramme, L. Moreau, T. Haine, P. Xu, C. Frenkel, R. Dekimpe, F. Stas, D. Flandre, A 40-to-80 MHz sub-4 μW/MHz ULV cortex-M0 MCU SoC in 28 nm FDSOI with dual-loop adaptive back-bias generator for 20 μs wake-up from deep fully retentive sleep mode, in Proceedings of IEEE International Solid-State Circuits Conference (2019), 2p. D. Bol, M. Schramme, L. Moreau, T. Haine, P. Xu, C. Frenkel, R. Dekimpe, F. Stas, D. Flandre, A 40-to-80 MHz sub-4 μW/MHz ULV cortex-M0 MCU SoC in 28 nm FDSOI with dual-loop adaptive back-bias generator for 20 μs wake-up from deep fully retentive sleep mode, in Proceedings of IEEE International Solid-State Circuits Conference (2019), 2p.
10.
Zurück zum Zitat T. Haine, D. Flandre, D. Bol, An 8-T ULV SRAM macro in 28nm FDSOI with 7.4 pW/bit retention power and back-biased-scalable speed/energy trade-off, in Proceedings of IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2018), 2p. T. Haine, D. Flandre, D. Bol, An 8-T ULV SRAM macro in 28nm FDSOI with 7.4 pW/bit retention power and back-biased-scalable speed/energy trade-off, in Proceedings of IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2018), 2p.
11.
Zurück zum Zitat B. Moons et al., ENVISION: a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm FDSOI, in Proceedings of IEEE International Solid-State Circuit Conference (2017), pp. 246–247 B. Moons et al., ENVISION: a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm FDSOI, in Proceedings of IEEE International Solid-State Circuit Conference (2017), pp. 246–247
12.
Zurück zum Zitat P. Mercier, D. Daly, A. Chandrakasan, An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE J. Solid State Circuits 44(6), 1679–1688 (2009)CrossRef P. Mercier, D. Daly, A. Chandrakasan, An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE J. Solid State Circuits 44(6), 1679–1688 (2009)CrossRef
13.
Zurück zum Zitat IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE 802.15.4-2011 standard (2011) IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE 802.15.4-2011 standard (2011)
14.
Zurück zum Zitat G. de Streel, F. Stas, T. Gurné, F. Durant, C. Frenkel, A. Cathelin, D.Bol, SleepTalker: a ULV 802.15.4a IR-UWB transmitter SoC in 28-nm FDSOI achieving 14 pJ/b at 27 Mb/s with channel selection based on adaptive FBB and digitally programmable pulse shaping. IEEE J. Solid-State Circuits 52, 1163–1177 (2017) G. de Streel, F. Stas, T. Gurné, F. Durant, C. Frenkel, A. Cathelin, D.Bol, SleepTalker: a ULV 802.15.4a IR-UWB transmitter SoC in 28-nm FDSOI achieving 14 pJ/b at 27 Mb/s with channel selection based on adaptive FBB and digitally programmable pulse shaping. IEEE J. Solid-State Circuits 52, 1163–1177 (2017)
15.
Zurück zum Zitat G. de Streel, F. Stas, T. Gurne, F. Durant, C. Frenkel, D. Bol, SleepTalker: a 28 nm FDSOI ULV 802.15.4a IR-UWB transmitter SoC achieving 14 pJ/bit at 27 Mb/s with adaptive-FBB-based channel selection and programmable pulse shape, in IEEE Symposium VLSI Circuits (VLSI) (2016), 2p. G. de Streel, F. Stas, T. Gurne, F. Durant, C. Frenkel, D. Bol, SleepTalker: a 28 nm FDSOI ULV 802.15.4a IR-UWB transmitter SoC achieving 14 pJ/bit at 27 Mb/s with adaptive-FBB-based channel selection and programmable pulse shape, in IEEE Symposium VLSI Circuits (VLSI) (2016), 2p.
16.
Zurück zum Zitat J. Ryckaert, G. Van der Plas, V. De Heyn, C. Desset, B. Van Poucke, J. Craninckx, A 0.65-to-1.4 nJ/burst 3-to-10 GHz UWB all-digital TX in 90 nm CMOS for IEEE 802.15.4a. IEEE J. Solid-State Circuits 42(12), 2860–2869 (2007) J. Ryckaert, G. Van der Plas, V. De Heyn, C. Desset, B. Van Poucke, J. Craninckx, A 0.65-to-1.4 nJ/burst 3-to-10 GHz UWB all-digital TX in 90 nm CMOS for IEEE 802.15.4a. IEEE J. Solid-State Circuits 42(12), 2860–2869 (2007)
17.
Zurück zum Zitat Y. Eken, J. Uyemura, A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS. IEEE J. Solid-State Circuits 39(1), 230–233 (2004) Y. Eken, J. Uyemura, A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS. IEEE J. Solid-State Circuits 39(1), 230–233 (2004)
18.
Zurück zum Zitat A. Lopez-Martin, S. Baswa, J. Ramirez-Angulo, R. Carvajal, Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE J. Solid-State Circuits 40(5), 1068–1077 (2005)CrossRef A. Lopez-Martin, S. Baswa, J. Ramirez-Angulo, R. Carvajal, Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE J. Solid-State Circuits 40(5), 1068–1077 (2005)CrossRef
19.
Zurück zum Zitat J. Ramirez-Angulo, M. Holmes, Simple technique using local CMFB to enhance slew rate and bandwidth of one-stage CMOS op-amps. Electron. Lett. 38(23), 1409–1411 (2002)CrossRef J. Ramirez-Angulo, M. Holmes, Simple technique using local CMFB to enhance slew rate and bandwidth of one-stage CMOS op-amps. Electron. Lett. 38(23), 1409–1411 (2002)CrossRef
20.
Zurück zum Zitat G. de Streel, D. Bol, Impact of back gate biasing schemes on energy and robustness of ULV logic in 28 nm UTBB FDSOI technology, in IEEE International Symposium on Low Power Electronics and Design (ISLPED) (2013), pp. 255–260 G. de Streel, D. Bol, Impact of back gate biasing schemes on energy and robustness of ULV logic in 28 nm UTBB FDSOI technology, in IEEE International Symposium on Low Power Electronics and Design (ISLPED) (2013), pp. 255–260
21.
Zurück zum Zitat R. Liu et al., A 264-μW 802.15.4a-compliant IR-UWB transmitter in 22 nm FinFET for wireless sensor network application, in Proceedings of IEEE RFIC Conference (2018), pp. 164–167 R. Liu et al., A 264-μW 802.15.4a-compliant IR-UWB transmitter in 22 nm FinFET for wireless sensor network application, in Proceedings of IEEE RFIC Conference (2018), pp. 164–167
Metadaten
Titel
An 802.15.4 IR-UWB Transmitter SoC with Adaptive-FBB-Based Channel Selection and Programmable Pulse Shape
verfasst von
David Bol
Guerric de Streel
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39496-7_9

Neuer Inhalt