Skip to main content

2020 | OriginalPaper | Buchkapitel

10. Body-Bias Calibration Based Temperature Sensor

verfasst von : Martin Cochet, Ben Keller, Sylvain Clerc, Fady Abouzeid, Andreia Cathelin, Jean-Luc Autran, Philippe Roche, Borivoje Nikolić

Erschienen in: The Fourth Terminal

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Temperature monitoring is critical to the operation of all SoCs, as it provides information to adjust logic timing, optimize power management, or calibrate analog circuits. The temperature information should be obtained with a fine spatial and temporal resolution, which requires low-area sensors with a fast conversion time. Digital MOS sensors offer such performance and take full advantage of process scaling; however, they often require costly two-point calibration to achieve the desired accuracy. This chapter presents a digital sensor in 28 nm FD-SOI process which takes advantage of the technology’s extended body-biasing capabilities for process compensation. Through an NMOS-only oscillator, a single regulator provides a low-noise supply and NWell biasing. The probe is complemented by an on-chip digital logic backend to compensate for non-linearities. The whole system achieves an accuracy of −1.4 ∘C/1.3 ∘C, a per-probe area of 1044 µm2, and accommodates a wide operating range (0.62–1.2 V) and satisfying power (2.0 nJ/Sa) and accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Further metric performances of the sensors are compiled in Table 10.3 at the end of this chapter.
 
2
Quantitatively, T r = max((T max − T min)∕2N, T rms), where [T min; T max] is the sensor’s range, N the number of output bits, and T rms the measurement repeatability.
 
3
This value can be derived in the following steps: an error in the I ref directly translates to an equal relative error in the generated supply, i.e., dII = dVV ; then the voltage–frequency sensitivity can be estimated from simulations to 1.49 (dFF = 1.49 dVV , typical PVT corner); last, the frequency–temperature sensitivity is the metric previously seen of 0.21 ∘C/%, (dC = 21.3 dFF).
 
4
The proposed architecture’s operating range is limited by the exponential delay-temperature trend: for wider ranges, the change of frequency between T min and T max makes the design impractical.
 
Literatur
1.
Zurück zum Zitat T. Anand, K.A.A. Makinwa, P.K. Hanumolu, A VCO based highly digital temperature sensor with 0.034 C/mV supply sensitivity. IEEE J. Solid State Circuits 51(11), 2651–2663 (2016) T. Anand, K.A.A. Makinwa, P.K. Hanumolu, A VCO based highly digital temperature sensor with 0.034 C/mV supply sensitivity. IEEE J. Solid State Circuits 51(11), 2651–2663 (2016)
2.
Zurück zum Zitat M. Bazes, Two novel fully complementary self-biased CMOS differential amplifiers. IEEE J. Solid State Circuits 26(2), 165–168 (1991)CrossRef M. Bazes, Two novel fully complementary self-biased CMOS differential amplifiers. IEEE J. Solid State Circuits 26(2), 165–168 (1991)CrossRef
3.
Zurück zum Zitat A. Brokaw, A simple three-terminal IC bandgap reference. IEEE J. Solid State Circuits 9(6), 388–393 (1974)CrossRef A. Brokaw, A simple three-terminal IC bandgap reference. IEEE J. Solid State Circuits 9(6), 388–393 (1974)CrossRef
5.
Zurück zum Zitat M. Cochet, Temperature Sensor in Energy Efficiency Optimization in 28 nm FD-SOI: Circuit Design for Adaptive Clocking and Power-Temperature Aware Digital SoCs (Doctoral Dissertation) (2016), pp. 105–130 M. Cochet, Temperature Sensor in Energy Efficiency Optimization in 28 nm FD-SOI: Circuit Design for Adaptive Clocking and Power-Temperature Aware Digital SoCs (Doctoral Dissertation) (2016), pp. 105–130
6.
Zurück zum Zitat M. Cochet et al., A 225 μm 2 probe single-point calibration digital temperature sensor using body-bias adjustment in 28 nm FD-SOI CMOS. IEEE Solid-State Circuits Lett. 1(1), 14–17 (2018)CrossRef M. Cochet et al., A 225 μm 2 probe single-point calibration digital temperature sensor using body-bias adjustment in 28 nm FD-SOI CMOS. IEEE Solid-State Circuits Lett. 1(1), 14–17 (2018)CrossRef
7.
Zurück zum Zitat M. Eberlein, I. Yahav, A 28 nm CMOS ultra-compact thermal sensor in current-mode technique, in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu (2016), pp. 1–2 M. Eberlein, I. Yahav, A 28 nm CMOS ultra-compact thermal sensor in current-mode technique, in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu (2016), pp. 1–2
8.
Zurück zum Zitat D. Hilbiber, A new semiconductor voltage standard, in IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 1964, vol. VII (1964), pp. 32–33 D. Hilbiber, A new semiconductor voltage standard, in IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 1964, vol. VII (1964), pp. 32–33
9.
Zurück zum Zitat S. Hwang, J. Koo, K. Kim, H. Lee, C. Kim, A 0.008mm2 500 /spl mu/W 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Trans. Circuits Syst. Regul. Pap. 60(9), 2241–2248 (2013) S. Hwang, J. Koo, K. Kim, H. Lee, C. Kim, A 0.008mm2 500 /spl mu/W 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Trans. Circuits Syst. Regul. Pap. 60(9), 2241–2248 (2013)
10.
Zurück zum Zitat S. Kim, M. Seok, A sub-50 μm2, voltage-scalable, digital-standard-cell-compatible thermal sensor frontend for on-chip thermal monitoring. J. Low Power Electron. Appl. 8(2), 16 (2018) S. Kim, M. Seok, A sub-50 μm2, voltage-scalable, digital-standard-cell-compatible thermal sensor frontend for on-chip thermal monitoring. J. Low Power Electron. Appl. 8(2), 16 (2018)
11.
Zurück zum Zitat A. Mahfuzul Islam, J. Shiomi, T. Ishihara, H. Onodera, Wide-supply-range all-digital leakage variation sensor for on-chip process and temperature monitoring. IEEE J. Solid State Circuits 50(11), 2475–2490 (2015)CrossRef A. Mahfuzul Islam, J. Shiomi, T. Ishihara, H. Onodera, Wide-supply-range all-digital leakage variation sensor for on-chip process and temperature monitoring. IEEE J. Solid State Circuits 50(11), 2475–2490 (2015)CrossRef
13.
Zurück zum Zitat S. Pan, Y. Luo, S.H. Shalmany, K.A.A. Makinwa, 9.1 A resistor-based temperature sensor with a 0.13pJ⋅K2resolution FOM, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2017), pp. 158–159 S. Pan, Y. Luo, S.H. Shalmany, K.A.A. Makinwa, 9.1 A resistor-based temperature sensor with a 0.13pJ⋅K2resolution FOM, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2017), pp. 158–159
14.
Zurück zum Zitat H. Park, J. Kim, A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 ∘C/V, IEEE J. Solid State Circuits 53(3), 906–912 (2018) H. Park, J. Kim, A 0.8-V resistor-based temperature sensor in 65-nm CMOS with supply sensitivity of 0.28 C/V, IEEE J. Solid State Circuits 53(3), 906–912 (2018)
15.
Zurück zum Zitat M. Saligane, M. Khayatzadeh, Y. Zhang, S. Jeong, D. Blaauw, D. Sylvester, All-digital SoC thermal sensor using on-chip high order temperature curvature correction, in 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose (2015), pp. 1–4 M. Saligane, M. Khayatzadeh, Y. Zhang, S. Jeong, D. Blaauw, D. Sylvester, All-digital SoC thermal sensor using on-chip high order temperature curvature correction, in 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose (2015), pp. 1–4
16.
Zurück zum Zitat U. Sönmez, F. Sebastiano, K.A.A. Makinwa, 11.4 1650 μm2 thermal-diffusivity sensors with inaccuracies down to ±0.75∘C in 40nm CMOS, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2016), pp. 206–207 U. Sönmez, F. Sebastiano, K.A.A. Makinwa, 11.4 1650 μm2 thermal-diffusivity sensors with inaccuracies down to ±0.75C in 40nm CMOS, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2016), pp. 206–207
17.
Zurück zum Zitat C.-C. Teng, Y.-K. Cheng, E. Rosenbaum, S.-M. Kang, iTEM: a temperature-dependent electromigration reliability diagnosis tool. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(8), 882–893 (1997)CrossRef C.-C. Teng, Y.-K. Cheng, E. Rosenbaum, S.-M. Kang, iTEM: a temperature-dependent electromigration reliability diagnosis tool. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(8), 882–893 (1997)CrossRef
18.
Zurück zum Zitat C. van Vroonhoven, K. Makinwa, A CMOS temperature-to-digital converter with an inaccuracy of + ∕ −0.5 c (3/spl sigma) from − 55 to 125c, in IEEE International Solid-State Circuits Conference, 2008. Digest of Technical Papers (2008), pp. 576–637 C. van Vroonhoven, K. Makinwa, A CMOS temperature-to-digital converter with an inaccuracy of + ∕ −0.5 c (3/spl sigma) from − 55 to 125c, in IEEE International Solid-State Circuits Conference, 2008. Digest of Technical Papers (2008), pp. 576–637
19.
Zurück zum Zitat K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, D. Ham, Dual-DLL based CMOS all-digital temperature sensor for microprocessor thermal monitoring, in IEEE International Solid-State Circuits Conference – Digest of Technical Papers, 2009 (2009), pp. 68–69, 69a K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, D. Ham, Dual-DLL based CMOS all-digital temperature sensor for microprocessor thermal monitoring, in IEEE International Solid-State Circuits Conference – Digest of Technical Papers, 2009 (2009), pp. 68–69, 69a
20.
Zurück zum Zitat K. Yang et al., 9.2 A 0.6nJ − 0.22∕ + 0.19∘C inaccuracy temperature sensor using exponential subthreshold oscillation dependence, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2017), pp. 160–161 K. Yang et al., 9.2 A 0.6nJ − 0.22∕ + 0.19C inaccuracy temperature sensor using exponential subthreshold oscillation dependence, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (2017), pp. 160–161
21.
Zurück zum Zitat C. Zhang, K. Makinwa, The effect of substrate doping on the behaviour of a CMOS electrothermal frequency-locked-loop, in TRANSDUCERS 2007 – International Solid-State Sensors, Actuators and Microsystems Conference, 2007. (2007), pp. 2283–2286 C. Zhang, K. Makinwa, The effect of substrate doping on the behaviour of a CMOS electrothermal frequency-locked-loop, in TRANSDUCERS 2007 – International Solid-State Sensors, Actuators and Microsystems Conference, 2007. (2007), pp. 2283–2286
Metadaten
Titel
Body-Bias Calibration Based Temperature Sensor
verfasst von
Martin Cochet
Ben Keller
Sylvain Clerc
Fady Abouzeid
Andreia Cathelin
Jean-Luc Autran
Philippe Roche
Borivoje Nikolić
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39496-7_10

Neuer Inhalt