Skip to main content
Erschienen in: Acta Mechanica 4/2020

28.01.2020 | Original Paper

An effective model for the thermal conductivity of nanoparticle composites/polymers

verfasst von: Lichun Bian, Chang Liu

Erschienen in: Acta Mechanica | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, an effective model is proposed to predict the effect of nanoparticle agglomeration on the thermal conductivity of three-phase nanocomposites/polymers. In order to better describe this effect, the concept of agglomeration degree is introduced. The effect of particle volume fraction on thermal conductivity of composites is also studied by considering the interphase and agglomeration degree of particles. First, the relationship between agglomeration degree and particle volume fraction is discussed. Then, the effects of particle volume fraction, agglomeration degree and interphase thickness on thermal conductivity of composites are studied. The obtained results show that the agglomeration degree increases with increasing particle volume fraction. The thermal conductivity of composites increases first and then decreases with increasing particle agglomeration degree, and is also affected by the different thermal conductivity of particles and matrix, and the thickness of interphase.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zare, Y., Rhee, K.Y., Parkb, S.J.: A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 69, 331–337 (2019)CrossRef Zare, Y., Rhee, K.Y., Parkb, S.J.: A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 69, 331–337 (2019)CrossRef
2.
Zurück zum Zitat Ginzburg, V.V.: Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites. Springer, Cham (2019)CrossRef Ginzburg, V.V.: Recent Developments in Theory and Modeling of Polymer-Based Nanocomposites. Springer, Cham (2019)CrossRef
3.
Zurück zum Zitat Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)CrossRef Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)CrossRef
4.
Zurück zum Zitat Xie, S.H., Zhu, B.K., Li, J.B., Wei, X.Z., Xu, Z.K.: Preparation and properties of polyimide/aluminum nitride composites. Polym. Test. 23(7), 797–801 (2004)CrossRef Xie, S.H., Zhu, B.K., Li, J.B., Wei, X.Z., Xu, Z.K.: Preparation and properties of polyimide/aluminum nitride composites. Polym. Test. 23(7), 797–801 (2004)CrossRef
5.
Zurück zum Zitat Agarwal, S., Khan, M.M.K., Gupta, R.: Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 48(12), 2474–2481 (2010)CrossRef Agarwal, S., Khan, M.M.K., Gupta, R.: Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 48(12), 2474–2481 (2010)CrossRef
6.
Zurück zum Zitat Hu, J., Huang, Y., Zeng, X., Li, Q., Ren, L., Sun, R., Xu, J.B., Wong, C.P.: Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 160, 127137 (2018)CrossRef Hu, J., Huang, Y., Zeng, X., Li, Q., Ren, L., Sun, R., Xu, J.B., Wong, C.P.: Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 160, 127137 (2018)CrossRef
7.
Zurück zum Zitat Shen, D., Zhan, Z., Liu, Z., Cao, Y., Zhou, L., Liu, Y., Dai, W., Nishimura, K., Li, C., Lin, C.T., Jiang, N., Yu, J.: Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 7(1), 2606 (2017)CrossRef Shen, D., Zhan, Z., Liu, Z., Cao, Y., Zhou, L., Liu, Y., Dai, W., Nishimura, K., Li, C., Lin, C.T., Jiang, N., Yu, J.: Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 7(1), 2606 (2017)CrossRef
8.
Zurück zum Zitat Tessema, A., Zhao, D., Moll, J., Xu, S., Kidane, A.: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym. Test. 57, 101–106 (2016)CrossRef Tessema, A., Zhao, D., Moll, J., Xu, S., Kidane, A.: Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym. Test. 57, 101–106 (2016)CrossRef
9.
Zurück zum Zitat Bian, L.C., Gao, M.: Nanomechanics model for properties of carbon nanotubes under a thermal environment. Acta Mech. 229(11), 4521–4538 (2018)MathSciNetCrossRef Bian, L.C., Gao, M.: Nanomechanics model for properties of carbon nanotubes under a thermal environment. Acta Mech. 229(11), 4521–4538 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118(6), 065101 (2015)CrossRef Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118(6), 065101 (2015)CrossRef
11.
Zurück zum Zitat Golbang, A., Famili, M.H.N., Shirvan, M.M.M.: A method for quantitative characterization of agglomeration degree in nanocomposites. Compos. Sci. Technol. 145, 181–186 (2017)CrossRef Golbang, A., Famili, M.H.N., Shirvan, M.M.M.: A method for quantitative characterization of agglomeration degree in nanocomposites. Compos. Sci. Technol. 145, 181–186 (2017)CrossRef
12.
Zurück zum Zitat Zeinedini, A., Shokrieh, M.M., Ebrahimi, A.: The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theor. Appl. Fract. Mech. 94, 84–94 (2018)CrossRef Zeinedini, A., Shokrieh, M.M., Ebrahimi, A.: The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites. Theor. Appl. Fract. Mech. 94, 84–94 (2018)CrossRef
13.
Zurück zum Zitat Dorigato, A., Pegoretti, A., Dzenis, Y.: Filler aggregation as a reinforcement mechanism in polymer; nanocomposites. Mech. Mater. 61(8), 79–90 (2013)CrossRef Dorigato, A., Pegoretti, A., Dzenis, Y.: Filler aggregation as a reinforcement mechanism in polymer; nanocomposites. Mech. Mater. 61(8), 79–90 (2013)CrossRef
14.
Zurück zum Zitat Jahanmard, P., Shojaei, A.: Mechanical properties and structure of solvent processed novolac resin/layered silicate: development of interphase region. RSC Adv. 5, 80875–80883 (2015)CrossRef Jahanmard, P., Shojaei, A.: Mechanical properties and structure of solvent processed novolac resin/layered silicate: development of interphase region. RSC Adv. 5, 80875–80883 (2015)CrossRef
15.
Zurück zum Zitat Cheng, Y., Bian, L., Wang, Y.Y., Taheri, F.: Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites. Int. J. Solids Struct. 51(18), 3168–3176 (2014)CrossRef Cheng, Y., Bian, L., Wang, Y.Y., Taheri, F.: Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites. Int. J. Solids Struct. 51(18), 3168–3176 (2014)CrossRef
16.
Zurück zum Zitat Zare, Y., Garmabi, H., Rhee, K.Y.: Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym. Test. 66, 189–194 (2018)CrossRef Zare, Y., Garmabi, H., Rhee, K.Y.: Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym. Test. 66, 189–194 (2018)CrossRef
17.
Zurück zum Zitat Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Three-phase Lewis–Nielsen model for the thermal conductivity of polymer nanocomposites. In: 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE (2012) Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Three-phase Lewis–Nielsen model for the thermal conductivity of polymer nanocomposites. In: 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE (2012)
18.
Zurück zum Zitat Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3–4), 491–499 (2009)CrossRef Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3–4), 491–499 (2009)CrossRef
19.
Zurück zum Zitat Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3–4), 1304–1315 (2007)CrossRef Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3–4), 1304–1315 (2007)CrossRef
20.
Zurück zum Zitat Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692 (1997)CrossRef Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692 (1997)CrossRef
21.
Zurück zum Zitat Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)CrossRef Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)CrossRef
22.
Zurück zum Zitat Machrafi, H., Lebon, G., Iorio, C.S.: Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos. Sci. Technol. 130, 78–87 (2016)CrossRef Machrafi, H., Lebon, G., Iorio, C.S.: Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos. Sci. Technol. 130, 78–87 (2016)CrossRef
23.
Zurück zum Zitat Wemhoff, A.P., Webb, A.J.: Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material. Int. J. Heat Mass Transf. 97, 432–438 (2016)CrossRef Wemhoff, A.P., Webb, A.J.: Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material. Int. J. Heat Mass Transf. 97, 432–438 (2016)CrossRef
24.
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. A 241(1226), 376–396 (1957)MathSciNetMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. A 241(1226), 376–396 (1957)MathSciNetMATH
25.
Zurück zum Zitat Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)CrossRef Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)CrossRef
26.
Zurück zum Zitat Van Tung, H., Trang, L.T.N.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–1969 (2018)MathSciNetCrossRef Van Tung, H., Trang, L.T.N.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–1969 (2018)MathSciNetCrossRef
27.
Zurück zum Zitat Lee, J.K.: Prediction of thermal conductivities of laminated composites using penny-shaped fillers. J. Mech. Sci. Technol. 22(12), 2481–2488 (2008)CrossRef Lee, J.K.: Prediction of thermal conductivities of laminated composites using penny-shaped fillers. J. Mech. Sci. Technol. 22(12), 2481–2488 (2008)CrossRef
28.
Zurück zum Zitat Chen, H., Witharana, S., Jin, Y., Kim, C., Ding, Y.: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. China Particuol. 7(2), 151–157 (2009)CrossRef Chen, H., Witharana, S., Jin, Y., Kim, C., Ding, Y.: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. China Particuol. 7(2), 151–157 (2009)CrossRef
29.
Zurück zum Zitat Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Kebinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89(14), 143119 (2006)CrossRef Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Kebinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 89(14), 143119 (2006)CrossRef
30.
Zurück zum Zitat Hui, P.M., Zhang, X., Markworth, A.J., Stroud, D.: Thermal conductivity of graded composites: numerical simulations and an effective medium approximation. J. Mater. Sci. 34(22), 5497–5503 (1999)CrossRef Hui, P.M., Zhang, X., Markworth, A.J., Stroud, D.: Thermal conductivity of graded composites: numerical simulations and an effective medium approximation. J. Mater. Sci. 34(22), 5497–5503 (1999)CrossRef
31.
Zurück zum Zitat Deng, X., Huang, Z., Wang, W., Rajesh, N.D.: Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 1971–1979 (2016)CrossRef Deng, X., Huang, Z., Wang, W., Rajesh, N.D.: Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 1971–1979 (2016)CrossRef
32.
Zurück zum Zitat Downing, T.D., Kumar, R., Cross, W.M., Kjerengtroen, L., Kellar, J.J.: Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J. Adhes. Sci. Technol. 14(14), 1801–1812 (2000)CrossRef Downing, T.D., Kumar, R., Cross, W.M., Kjerengtroen, L., Kellar, J.J.: Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J. Adhes. Sci. Technol. 14(14), 1801–1812 (2000)CrossRef
33.
Zurück zum Zitat Behrang, A., Grmela, M., Dubois, C., Turenne, S., Lafleur, P.G.: Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions. J. Appl. Phys. 114(1), 508 (2013)CrossRef Behrang, A., Grmela, M., Dubois, C., Turenne, S., Lafleur, P.G.: Influence of particle-matrix interface, temperature, and agglomeration on heat conduction in dispersions. J. Appl. Phys. 114(1), 508 (2013)CrossRef
34.
Zurück zum Zitat Finney, E.E., Shields, S.P., Buhro, W.E., Finke, R.G.: Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an avrami-based analysis. Chem. Mater. 24(10), 1718–1725 (2012)CrossRef Finney, E.E., Shields, S.P., Buhro, W.E., Finke, R.G.: Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an avrami-based analysis. Chem. Mater. 24(10), 1718–1725 (2012)CrossRef
Metadaten
Titel
An effective model for the thermal conductivity of nanoparticle composites/polymers
verfasst von
Lichun Bian
Chang Liu
Publikationsdatum
28.01.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 4/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02610-9

Weitere Artikel der Ausgabe 4/2020

Acta Mechanica 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.