Skip to main content
Erschienen in: BIT Numerical Mathematics 3/2014

01.09.2014

An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems

verfasst von: Yuto Miyatake

Erschienen in: BIT Numerical Mathematics | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, the symplectic exponentially-fitted methods for Hamiltonian systems with periodic or oscillatory solutions have been attracting a lot of interest. As an alternative to them, in this paper, we propose a class of energy-preserving exponentially-fitted methods. For this aim, we show sufficient conditions for energy-preservation in terms of the coefficients of continuous stage Runge–Kutta (RK) methods, and extend the theory of exponentially-fitted RK methods in the context of continuous stage RK methods. Then by combining these two theories, we derive second and fourth order energy-preserving exponentially-fitted schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)CrossRef Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)CrossRef
3.
Zurück zum Zitat Ascher, U.M., Reich, S.: On some difficulties in integrating highly oscillatory Hamiltonian systems, pp. 281–296. In: Computational Molecular Dynamics. Lecture Notes in Computational Science and Engineering, vol. 4. Springer, Berlin (1999) Ascher, U.M., Reich, S.: On some difficulties in integrating highly oscillatory Hamiltonian systems, pp. 281–296. In: Computational Molecular Dynamics. Lecture Notes in Computational Science and Engineering, vol. 4. Springer, Berlin (1999)
4.
Zurück zum Zitat Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comp. Math. Appl. Mech. Eng. 1, 1–16 (1972)MathSciNetCrossRefMATH Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comp. Math. Appl. Mech. Eng. 1, 1–16 (1972)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Comm. 178, 732–744 (2008)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Comm. 178, 732–744 (2008)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223, 387–398 (2009)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223, 387–398 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT 50, 3–21 (2010)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT 50, 3–21 (2010)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order. Comput. Phys. Commun. 181, 2044–2056 (2010)CrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order. Comput. Phys. Commun. 181, 2044–2056 (2010)CrossRefMATH
11.
Zurück zum Zitat Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM Math. Model. Numer. Anal. 43, 645–649 (2009)MathSciNetCrossRefMATH Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM Math. Model. Numer. Anal. 43, 645–649 (2009)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Energy-preserving integrators and the structure of B-series. Tech. rep., NTNU preprint series: Numerics No.5/2009 Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Energy-preserving integrators and the structure of B-series. Tech. rep., NTNU preprint series: Numerics No.5/2009
13.
Zurück zum Zitat Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575–590 (2006)MathSciNetCrossRefMATH Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575–590 (2006)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)CrossRef Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)CrossRef
16.
Zurück zum Zitat Dahlby, M., Owren, B., Yaguchi, T.: Preserving multiple first integrals by discrete gradients. J. Phys. A 44, 305, 205 (2011) Dahlby, M., Owren, B., Yaguchi, T.: Preserving multiple first integrals by discrete gradients. J. Phys. A 44, 305, 205 (2011)
17.
Zurück zum Zitat Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z Angew. Math. Phys. 30, 177–189 (1979)MathSciNetCrossRefMATH Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z Angew. Math. Phys. 30, 177–189 (1979)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Num. Anal. 30, 1467–1482 (1993)MathSciNetCrossRefMATH Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Num. Anal. 30, 1467–1482 (1993)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Franco, J.M.: An embedded pair of exponentially fitted explicit Runge–Kutta methods. J. Comput. Appl. Math. 149, 407–414 (2002)MathSciNetCrossRefMATH Franco, J.M.: An embedded pair of exponentially fitted explicit Runge–Kutta methods. J. Comput. Appl. Math. 149, 407–414 (2002)MathSciNetCrossRefMATH
20.
21.
Zurück zum Zitat Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50, 427–443 (2004)MathSciNetCrossRefMATH Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50, 427–443 (2004)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177, 479–492 (2007)MathSciNetCrossRefMATH Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177, 479–492 (2007)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)MathSciNetCrossRef
24.
Zurück zum Zitat Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefMATH Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A 39, 5495 (2006)MathSciNetCrossRefMATH Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A 39, 5495 (2006)MathSciNetCrossRefMATH
28.
29.
Zurück zum Zitat Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM 5, 73–84 (2010)MathSciNet Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM 5, 73–84 (2010)MathSciNet
30.
Zurück zum Zitat Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRefMATH Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Heidelberg (2006) Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Heidelberg (2006)
32.
Zurück zum Zitat Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT 48, 231–243 (2008)MathSciNetCrossRefMATH Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT 48, 231–243 (2008)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Hairer, E., Zbinden, C.J.: On conjugate symplecticity of B-seried integrator. IMA J. Numer. Anal. 33, 57–79 (2013) Hairer, E., Zbinden, C.J.: On conjugate symplecticity of B-seried integrator. IMA J. Numer. Anal. 33, 57–79 (2013)
34.
Zurück zum Zitat Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)MathSciNetCrossRefMATH Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)MATH Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)MATH
38.
Zurück zum Zitat Ozawa, K.: A functional fitting Runge–Kutta method with variable coefficients. Japan J. Indust. Appl. Math. 18, 107–130 (2001)MathSciNetCrossRefMATH Ozawa, K.: A functional fitting Runge–Kutta method with variable coefficients. Japan J. Indust. Appl. Math. 18, 107–130 (2001)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Ozawa, K.: A functionally fitted three-stage explicit singly diagonally implicit Runge–Kutta method. Japan J. Indust. Appl. Math. 22, 403–427 (2005)MathSciNetCrossRefMATH Ozawa, K.: A functionally fitted three-stage explicit singly diagonally implicit Runge–Kutta method. Japan J. Indust. Appl. Math. 22, 403–427 (2005)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)MathSciNetCrossRefMATH Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045, 206 (2008) Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045, 206 (2008)
42.
Zurück zum Zitat Quispel, G.R.W., Turner, G.S.: Discrete gradient methods for solving ODEs numerically while preserving a first integral. J. Phys. A 29, L341–L349 (1996)MathSciNetCrossRefMATH Quispel, G.R.W., Turner, G.S.: Discrete gradient methods for solving ODEs numerically while preserving a first integral. J. Phys. A 29, L341–L349 (1996)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)CrossRefMATH Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)CrossRefMATH
45.
Zurück zum Zitat Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)MathSciNetCrossRefMATH Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Suris, Y.B.: On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian). In: Filippov, S.S. (ed.) Numerical Solution of Ordinary Differential Equations, pp. 148–160. Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow (1988) Suris, Y.B.: On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian). In: Filippov, S.S. (ed.) Numerical Solution of Ordinary Differential Equations, pp. 148–160. Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow (1988)
47.
Zurück zum Zitat Tang, W., Sun, Y.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comput. 219, 2158–2179 (2012)MathSciNetCrossRefMATH Tang, W., Sun, Y.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comput. 219, 2158–2179 (2012)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Van Daele, M., Vanden Berghe, G.: Geometric numerical integration by means of exponentially-fitted methods. Appl. Numer. Math. 57, 415–435 (2007)MathSciNetCrossRefMATH Van Daele, M., Vanden Berghe, G.: Geometric numerical integration by means of exponentially-fitted methods. Appl. Numer. Math. 57, 415–435 (2007)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Van de Vyver, H.: A symplectic exponentially fitted modified Runge–Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10, 261–269 (2005)CrossRef Van de Vyver, H.: A symplectic exponentially fitted modified Runge–Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10, 261–269 (2005)CrossRef
50.
Zurück zum Zitat Van de Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)CrossRefMATH Van de Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)CrossRefMATH
51.
Zurück zum Zitat Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999) Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)
52.
Zurück zum Zitat Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000) Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)
53.
Zurück zum Zitat Vanden Berghe, G., Ixaru, L.G., De Meyer, H.: Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods. J. Comput. Appl. Math. 132, 95–105 (2001) Vanden Berghe, G., Ixaru, L.G., De Meyer, H.: Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods. J. Comput. Appl. Math. 132, 95–105 (2001)
54.
Zurück zum Zitat Vanden Berghe, G., Van Daele, M.: Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type. Numer. Algor. 56, 591–608 (2011) Vanden Berghe, G., Van Daele, M.: Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type. Numer. Algor. 56, 591–608 (2011)
55.
Zurück zum Zitat Vanden Berghe, G., Van Daele, M., Vande Vyver, H.: Exponential fitted Runge–Kutta methods of collocation type: fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239 (2003) Vanden Berghe, G., Van Daele, M., Vande Vyver, H.: Exponential fitted Runge–Kutta methods of collocation type: fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239 (2003)
56.
Zurück zum Zitat Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)MathSciNetCrossRefMATH
57.
Zurück zum Zitat Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton–Jacobi theory and Lie–Poisson integrators. Phys. Lett. A 133, 134–139 (1988)MathSciNetCrossRef Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton–Jacobi theory and Lie–Poisson integrators. Phys. Lett. A 133, 134–139 (1988)MathSciNetCrossRef
Metadaten
Titel
An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems
verfasst von
Yuto Miyatake
Publikationsdatum
01.09.2014
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 3/2014
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-014-0474-4

Weitere Artikel der Ausgabe 3/2014

BIT Numerical Mathematics 3/2014 Zur Ausgabe

Premium Partner