Skip to main content
Erschienen in: Experimental Mechanics 3/2007

01.06.2007

An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl

verfasst von: F. Barthelat, H. D. Espinosa

Erschienen in: Experimental Mechanics | Ausgabe 3/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nacre, also known as mother-of-pearl, is a hard biological composite found in the inside layer of many shells such as oyster or abalone. It is composed of microscopic ceramic tablets arranged in layers and tightly stacked to form a three-dimensional brick wall structure, where the mortar is a thin layer of biopolymers (20–30 nm). Although mostly made of a brittle ceramic, the structure of nacre is so well designed that its toughness is several order of magnitudes larger that the ceramic it is made of. How the microstructure of nacre controls its mechanical performance has been the focus of numerous studies over the past two decades, because such understanding may inspire novel composite designs though biomimetics. This paper presents in detail uniaxial tension experiment performed on miniature nacre specimens. Large inelastic deformations were observed in hydrated condition, which were explained by sliding of the tablets on one another and progressive locking generated by their microscopic waviness. Fracture experiments were also performed, and for the first time the full crack resistance curve was established for nacre. A rising resistance curve is an indication of the robustness and damage tolerance of that material. These measurements are then discussed and correlated with toughening extrinsic mechanisms operating at the microscale. Moreover, specific features of the microstructure and their relevance to associated toughening mechanisms were identified. These features and mechanisms, critical to the robustness of the shell, were finely tuned over millions of years of evolution. Hence, they are expected to serve as a basis to establish guidelines for the design of novel man-made composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Currey, JD (1999) The design of mineralised hard tissues for their mechanical functions. J Exp Biol 202:3285–3294. Currey, JD (1999) The design of mineralised hard tissues for their mechanical functions. J Exp Biol 202:3285–3294.
2.
Zurück zum Zitat Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, New York. Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, New York.
3.
Zurück zum Zitat Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485–2493. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485–2493.
4.
Zurück zum Zitat Currey JD, Taylor JD (1974) The mechanical behavior of some molluscan hard tissues. J Zool (London) 173:395–406. Currey JD, Taylor JD (1974) The mechanical behavior of some molluscan hard tissues. J Zool (London) 173:395–406.
5.
Zurück zum Zitat Sarikaya M, Aksay IA (eds) (1995) Biomimetics, design and processing of materials. Woodbury, NY. Sarikaya M, Aksay IA (eds) (1995) Biomimetics, design and processing of materials. Woodbury, NY.
6.
Zurück zum Zitat Currey JD (1977) Mechanical properties of mother of pearl in tension. Proc R Soc Lond 196:443–463. Currey JD (1977) Mechanical properties of mother of pearl in tension. Proc R Soc Lond 196:443–463.
7.
Zurück zum Zitat Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond 234:415–440. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond 234:415–440.
8.
Zurück zum Zitat Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater 48: 2383–2398.CrossRef Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater 48: 2383–2398.CrossRef
9.
Zurück zum Zitat Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55:225–444.CrossRef Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55:225–444.CrossRef
10.
Zurück zum Zitat Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21:1977–1986.CrossRef Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21:1977–1986.CrossRef
11.
Zurück zum Zitat Wang RZ, Wen HB, Cui FZ, Zhang HB, Li HD (1995) Observations of damage morphologies in nacre during deformation and fracture. J Mater Sci 30:2299–2304.CrossRef Wang RZ, Wen HB, Cui FZ, Zhang HB, Li HD (1995) Observations of damage morphologies in nacre during deformation and fracture. J Mater Sci 30:2299–2304.CrossRef
12.
Zurück zum Zitat Barthelat F, Espinosa HD (2005). In: MRS 2004 fall meeting. Boston. Barthelat F, Espinosa HD (2005). In: MRS 2004 fall meeting. Boston.
13.
Zurück zum Zitat Li XD, Chang WC, Chao YJ, Wang RZ, Chang M (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4:613–617.CrossRef Li XD, Chang WC, Chao YJ, Wang RZ, Chang M (2004) Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett 4:613–617.CrossRef
14.
Zurück zum Zitat Bruet BJF, et al. (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400–2419.CrossRef Bruet BJF, et al. (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400–2419.CrossRef
15.
Zurück zum Zitat Schaeffer TE, et al. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740.CrossRef Schaeffer TE, et al. (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740.CrossRef
16.
Zurück zum Zitat Smith BL, et al. (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature (London) 399:761–763.CrossRef Smith BL, et al. (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature (London) 399:761–763.CrossRef
17.
Zurück zum Zitat Evans AG, et al. (2001) Model for the robust mechanical behavior of nacre. J Mater Res 16:2475–2484. Evans AG, et al. (2001) Model for the robust mechanical behavior of nacre. J Mater Res 16:2475–2484.
18.
Zurück zum Zitat Song F, Bai YL (2003) Effects of nanostructures on the fracture strength of the interfaces in nacre. J Mater Res 18:1741–1744. Song F, Bai YL (2003) Effects of nanostructures on the fracture strength of the interfaces in nacre. J Mater Res 18:1741–1744.
19.
Zurück zum Zitat Li XD, Xu ZH, Wang RZ (2006) In situ observation of nanograin rotation and deformation in nacre. Nano Lett 6:2301–2304.CrossRef Li XD, Xu ZH, Wang RZ (2006) In situ observation of nanograin rotation and deformation in nacre. Nano Lett 6:2301–2304.CrossRef
20.
Zurück zum Zitat Kotha SP, Li Y, Guzelsu N (2001) Micromechanical model of nacre tested in tension. J Mater Sci 36:2001–2007.CrossRef Kotha SP, Li Y, Guzelsu N (2001) Micromechanical model of nacre tested in tension. J Mater Sci 36:2001–2007.CrossRef
21.
Zurück zum Zitat Katti K, Katti DR, Tang J, Pradhan S, Sarikaya M (2005) Modeling mechanical responses in a laminated biocomposite. Part II. Nonlinear responses and nuances of nanostructure. J Mater Sci 40:1749–1755.CrossRef Katti K, Katti DR, Tang J, Pradhan S, Sarikaya M (2005) Modeling mechanical responses in a laminated biocomposite. Part II. Nonlinear responses and nuances of nanostructure. J Mater Sci 40:1749–1755.CrossRef
22.
Zurück zum Zitat Okumura K, de Gennes PG (2001) Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur Phys J, E Soft Matter 4:121–127.CrossRef Okumura K, de Gennes PG (2001) Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur Phys J, E Soft Matter 4:121–127.CrossRef
23.
Zurück zum Zitat Gao HJ (2006) Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int J Fract 138:101–137.MATHCrossRef Gao HJ (2006) Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int J Fract 138:101–137.MATHCrossRef
24.
Zurück zum Zitat Katti DR, Katti KS (2001) Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques. Part 1. Elastic properties. J Mater Sci 36:1411–1417.CrossRef Katti DR, Katti KS (2001) Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques. Part 1. Elastic properties. J Mater Sci 36:1411–1417.CrossRef
25.
Zurück zum Zitat Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress-analysis. Opt Eng 21:427–431. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress-analysis. Opt Eng 21:427–431.
26.
Zurück zum Zitat Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244.CrossRef Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244.CrossRef
27.
Zurück zum Zitat Evans AG, et al. (2001) A model for the robust mechanical behavior of nacre. J Mater Res 16:2475–2484. Evans AG, et al. (2001) A model for the robust mechanical behavior of nacre. J Mater Res 16:2475–2484.
28.
Zurück zum Zitat Manne S, et al. (1994) Atomic-force microscopy of the nacreous layer in mollusk shells. Proc R Soc Lond, B Biol Sci 256:17–23.CrossRef Manne S, et al. (1994) Atomic-force microscopy of the nacreous layer in mollusk shells. Proc R Soc Lond, B Biol Sci 256:17–23.CrossRef
29.
Zurück zum Zitat Feng QL, Cui FZ, Pu G, Wang RZ, Li HD (2000) Crystal orientation, toughening mechanisms and a mimic of nacre. Mater Sci Eng, C Biomim Mater, Sens Syst 11:19–25. Feng QL, Cui FZ, Pu G, Wang RZ, Li HD (2000) Crystal orientation, toughening mechanisms and a mimic of nacre. Mater Sci Eng, C Biomim Mater, Sens Syst 11:19–25.
30.
Zurück zum Zitat Song F, Bai Y (2002) Nanostructure of nacre and its mechanical effects. Int J of Nonlinear Sci & Numer Simul 3(3):257–260. Song F, Bai Y (2002) Nanostructure of nacre and its mechanical effects. Int J of Nonlinear Sci & Numer Simul 3(3):257–260.
31.
Zurück zum Zitat Blank S, et al. (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc-Oxford 212:280–291.CrossRefMathSciNet Blank S, et al. (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc-Oxford 212:280–291.CrossRefMathSciNet
32.
Zurück zum Zitat McNulty JC, Zok FW, Genin GM, Evans AG (1999) Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength. J Am Ceram Soc 82:1217–1228.CrossRef McNulty JC, Zok FW, Genin GM, Evans AG (1999) Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength. J Am Ceram Soc 82:1217–1228.CrossRef
33.
Zurück zum Zitat McMeeking RM, Evans AG (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65:242–246.CrossRef McMeeking RM, Evans AG (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65:242–246.CrossRef
34.
Zurück zum Zitat Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206.CrossRef Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206.CrossRef
35.
Zurück zum Zitat Saxena A (1998) Nonlinear fracture mechanics. CRC Press, Boca Raton, FL.MATH Saxena A (1998) Nonlinear fracture mechanics. CRC Press, Boca Raton, FL.MATH
36.
Zurück zum Zitat ASTM (2005) Standard E399-05: standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. ASTM (2005) Standard E399-05: standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials.
37.
Zurück zum Zitat McMeeking RM, Parks DM (1979) In: Elastic-plastic fracture, vol 668, pp 175–194. American Society for Testing and Materials (ASTM-STP), Philadelphia. McMeeking RM, Parks DM (1979) In: Elastic-plastic fracture, vol 668, pp 175–194. American Society for Testing and Materials (ASTM-STP), Philadelphia.
38.
Zurück zum Zitat ASTM (2004) ASTM standard E 1820-01: Standard test method for measurement of fracture toughness. ASTM (2004) ASTM standard E 1820-01: Standard test method for measurement of fracture toughness.
39.
Zurück zum Zitat Barker DB, Sanford RJ, Chona R (1985) Determining K and related stress-field parameters from displacement-fields. Exp Mech 25:399–407.CrossRef Barker DB, Sanford RJ, Chona R (1985) Determining K and related stress-field parameters from displacement-fields. Exp Mech 25:399–407.CrossRef
40.
Zurück zum Zitat McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28:101–112.CrossRef McNeill SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 28:101–112.CrossRef
41.
Zurück zum Zitat Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J Fract Mech 1:189–203. Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J Fract Mech 1:189–203.
42.
Zurück zum Zitat Kamat S, Su X, Ballarini R, Heuer A (2000) H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405:1036–1040.CrossRef Kamat S, Su X, Ballarini R, Heuer A (2000) H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405:1036–1040.CrossRef
43.
Zurück zum Zitat Barthelat F, Tang H, Li C, Espinosa H (2007) On the microscopic origins of the toughness of nacre (submitted). Barthelat F, Tang H, Li C, Espinosa H (2007) On the microscopic origins of the toughness of nacre (submitted).
Metadaten
Titel
An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl
verfasst von
F. Barthelat
H. D. Espinosa
Publikationsdatum
01.06.2007
Erschienen in
Experimental Mechanics / Ausgabe 3/2007
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-007-9040-1

Weitere Artikel der Ausgabe 3/2007

Experimental Mechanics 3/2007 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.