Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

02.09.2019 | ORIGINAL ARTICLE

An improved chip-thickness model for surface roughness prediction in robotic belt grinding considering the elastic state at contact wheel-workpiece interface

verfasst von: Chao Qu, Yuanjian Lv, Zeyuan Yang, Xiaohu Xu, Dahu Zhu, Sijie Yan

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The elastic state at contact wheel–workpiece interface is a critical issue during robotic belt grinding process that significantly influences the finishing profile accuracy. Establishing a reasonable undeformed chip-thickness (UCT) model that suits to this operation is considered a feasible approach to clarify the cutting mechanisms. In the present paper, an elastic state–driven robotic belt grinding chip-thickness model is established to predict the workpiece surface roughness. In this new model, the combined modulus of elasticity of the contact wheel is calculated according to the formula of Young’s modulus, and the exponent with respect to the effects of linear and nonlinear deflection is further determined based on the energy balance hypothesis. Experiments are conducted to verify the reasonability of the improved chip-thickness model from the perspective of surface roughness, and the findings are likely to clarify the differences in material removal mechanism between wheel grinding and robotic belt grinding essentially.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu D, Luo S, Yang L, Chen W, Yan S, Ding H (2015) On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys. Tribol Int 90:55–59CrossRef Zhu D, Luo S, Yang L, Chen W, Yan S, Ding H (2015) On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys. Tribol Int 90:55–59CrossRef
2.
Zurück zum Zitat Li WL, Zhou LP, Yan SJ (2015) A case study of blade inspection based on optical scanning method. Int J Prod Res 53(7):2165–2178CrossRef Li WL, Zhou LP, Yan SJ (2015) A case study of blade inspection based on optical scanning method. Int J Prod Res 53(7):2165–2178CrossRef
3.
Zurück zum Zitat Li WL, Xie H, Zhang G, Yan SJ, Yin ZP (2016) Hand-eye calibration in visually-guided robot grinding. IEEE Trans Cybern 46(11):2634–2642CrossRef Li WL, Xie H, Zhang G, Yan SJ, Yin ZP (2016) Hand-eye calibration in visually-guided robot grinding. IEEE Trans Cybern 46(11):2634–2642CrossRef
4.
Zurück zum Zitat Xu X, Zhu D, Zhang H, Yan S, Ding H (2017) TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. Int J Adv Manuf Technol 90(1–4):635–647CrossRef Xu X, Zhu D, Zhang H, Yan S, Ding H (2017) TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. Int J Adv Manuf Technol 90(1–4):635–647CrossRef
5.
Zurück zum Zitat Xu X, Zhu D, Wang J, Yan S, Ding H (2018) Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere. Robot Cim-Int Manuf 51:189–201CrossRef Xu X, Zhu D, Wang J, Yan S, Ding H (2018) Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere. Robot Cim-Int Manuf 51:189–201CrossRef
6.
Zurück zum Zitat Wang W, Yun C (2011) A path planning method for robotic belt surface grinding. Chinese J Aeronaut 24(4):520–526CrossRef Wang W, Yun C (2011) A path planning method for robotic belt surface grinding. Chinese J Aeronaut 24(4):520–526CrossRef
7.
Zurück zum Zitat Ng WX, Chan HK, Teo WK, Chen IM (2017) Capturing the tacit knowledge of the skilled operator to program tool paths and tool orientations for robot belt grinding. Int J Adv Manuf Technol 91(5–8):1599–1618CrossRef Ng WX, Chan HK, Teo WK, Chen IM (2017) Capturing the tacit knowledge of the skilled operator to program tool paths and tool orientations for robot belt grinding. Int J Adv Manuf Technol 91(5–8):1599–1618CrossRef
8.
Zurück zum Zitat Zhang T, Su J (2018) Collision-free planning algorithm of motion path for the robot belt grinding system. Int J Adv Robot Syst 7:1–13 Zhang T, Su J (2018) Collision-free planning algorithm of motion path for the robot belt grinding system. Int J Adv Robot Syst 7:1–13
9.
Zurück zum Zitat Chen F, Zhao H (2018) Design of eddy current dampers for vibration suppression in robotic milling. Adv Mech Eng 10:11):1–11)15 Chen F, Zhao H (2018) Design of eddy current dampers for vibration suppression in robotic milling. Adv Mech Eng 10:11):1–11)15
10.
Zurück zum Zitat Zhu D, Xu X, Yang Z, Zhuang K, Yan S, Ding H (2018) Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int 120:93–98CrossRef Zhu D, Xu X, Yang Z, Zhuang K, Yan S, Ding H (2018) Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int 120:93–98CrossRef
11.
Zurück zum Zitat Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Cim-Int Manuf 57:391–403CrossRef Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Cim-Int Manuf 57:391–403CrossRef
13.
Zurück zum Zitat Pandiyan V, Tjahjowidodo T (2017) In-process endpoint detection of weld seam removal in robotic abrasive belt grinding process. Int J Adv Manuf Technol 93(5–8):1699–1714CrossRef Pandiyan V, Tjahjowidodo T (2017) In-process endpoint detection of weld seam removal in robotic abrasive belt grinding process. Int J Adv Manuf Technol 93(5–8):1699–1714CrossRef
14.
Zurück zum Zitat Chen J, Chen H, Xu J, Wang J, Zhang X, Chen X (2018) Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm. Int J Adv Manuf Technol 98(1–4):859–972CrossRef Chen J, Chen H, Xu J, Wang J, Zhang X, Chen X (2018) Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm. Int J Adv Manuf Technol 98(1–4):859–972CrossRef
15.
Zurück zum Zitat Zhang X, Chen H, Xu J, Song X, Wang J, Chen X (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Tech 260:9–19CrossRef Zhang X, Chen H, Xu J, Song X, Wang J, Chen X (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Tech 260:9–19CrossRef
16.
Zurück zum Zitat Pandiyan V, Murugan P, Tjahjowidodo T, Caesarendra W, Manyar O (2019) In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robot Cim-Int Manuf 57:477–487CrossRef Pandiyan V, Murugan P, Tjahjowidodo T, Caesarendra W, Manyar O (2019) In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robot Cim-Int Manuf 57:477–487CrossRef
17.
Zurück zum Zitat Song Y, Liang W, Yang Y (2012) A method for grinding removal control of a robot belt grinding system. J Intell Manuf 23(5):1903–1913CrossRef Song Y, Liang W, Yang Y (2012) A method for grinding removal control of a robot belt grinding system. J Intell Manuf 23(5):1903–1913CrossRef
18.
Zurück zum Zitat Wu S, Kazerounian K, Gan Z, Sun Y (2014) A material removal model for robotic belt grinding process. Mach Sci Technol 18:15–30CrossRef Wu S, Kazerounian K, Gan Z, Sun Y (2014) A material removal model for robotic belt grinding process. Mach Sci Technol 18:15–30CrossRef
19.
Zurück zum Zitat Wang YJ, Huang Y, Chen YX, Yang ZS (2016) Model of an abrasive belt grinding surface removal contour and its application. Int J Adv Manuf Technol 82(9):2113–2122CrossRef Wang YJ, Huang Y, Chen YX, Yang ZS (2016) Model of an abrasive belt grinding surface removal contour and its application. Int J Adv Manuf Technol 82(9):2113–2122CrossRef
20.
Zurück zum Zitat Pandiyan V, Murugan P, Tjahjowidodo T, Caesarendra W, Manyar OM, Then DJH (2019) In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robot Cim-Int Manuf 57:477–487CrossRef Pandiyan V, Murugan P, Tjahjowidodo T, Caesarendra W, Manyar OM, Then DJH (2019) In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robot Cim-Int Manuf 57:477–487CrossRef
23.
Zurück zum Zitat Agarwal S, Rao PV (2005) A probabilistic approach to predict surface roughness in ceramic grinding. Int J Mach Tool Manu 45:609–616CrossRef Agarwal S, Rao PV (2005) A probabilistic approach to predict surface roughness in ceramic grinding. Int J Mach Tool Manu 45:609–616CrossRef
24.
Zurück zum Zitat Agarwal S, Rao PV (2010) Modeling and prediction of surface roughness in ceramic grinding. Int J Mach Tool Manu 50(12):1065–1076CrossRef Agarwal S, Rao PV (2010) Modeling and prediction of surface roughness in ceramic grinding. Int J Mach Tool Manu 50(12):1065–1076CrossRef
25.
Zurück zum Zitat Agarwal S, Rao PV (2012) Predictive modeling of undeformed chip thickness in ceramic grinding. Int J Mach Tool Manu 56:59–68CrossRef Agarwal S, Rao PV (2012) Predictive modeling of undeformed chip thickness in ceramic grinding. Int J Mach Tool Manu 56:59–68CrossRef
26.
Zurück zum Zitat Agarwal S, Rao PV (2013) Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding. Int J Mach Tool Manu 65(2):68–78CrossRef Agarwal S, Rao PV (2013) Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding. Int J Mach Tool Manu 65(2):68–78CrossRef
27.
Zurück zum Zitat Dai C, Ding W, Zhang L, Xu J, Su H (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Adv Manuf Technol 81:995–1005CrossRef Dai C, Ding W, Zhang L, Xu J, Su H (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Adv Manuf Technol 81:995–1005CrossRef
28.
Zurück zum Zitat Dai C, Ding W, Xu J, Xu X, Fu D (2017) Effects of undeformed chip thickness on grinding temperature and burn-out in high-efficiency deep grinding of Inconel718 superalloys. Int J Adv Manuf Technol 89:1841–1852CrossRef Dai C, Ding W, Xu J, Xu X, Fu D (2017) Effects of undeformed chip thickness on grinding temperature and burn-out in high-efficiency deep grinding of Inconel718 superalloys. Int J Adv Manuf Technol 89:1841–1852CrossRef
29.
Zurück zum Zitat Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tool Manu 122:66–80CrossRef Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tool Manu 122:66–80CrossRef
30.
Zurück zum Zitat Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manu 122:55–65CrossRef Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manu 122:55–65CrossRef
31.
Zurück zum Zitat Wang W, Liu F, Liu Z, Yun C (2017) Prediction of depth of cut for robotic belt grinding. Int J Adv Manuf Technol 91:699–708CrossRef Wang W, Liu F, Liu Z, Yun C (2017) Prediction of depth of cut for robotic belt grinding. Int J Adv Manuf Technol 91:699–708CrossRef
32.
Zurück zum Zitat Yan S, Xu X, Yang Z, Zhu D, Ding H (2019) An improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-off. J Manuf Process 37:496–508CrossRef Yan S, Xu X, Yang Z, Zhu D, Ding H (2019) An improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-off. J Manuf Process 37:496–508CrossRef
33.
Zurück zum Zitat Gopal AV, Rao PV (2004) A new chip-thickness model for performance assessment of silicon carbide grinding. Int J Adv Manuf Technol 24:816–820CrossRef Gopal AV, Rao PV (2004) A new chip-thickness model for performance assessment of silicon carbide grinding. Int J Adv Manuf Technol 24:816–820CrossRef
34.
Zurück zum Zitat Malkin S (1989) Grinding technology, theory and applications of machining with abrasives. Horwood Limited, Ellis Malkin S (1989) Grinding technology, theory and applications of machining with abrasives. Horwood Limited, Ellis
35.
Zurück zum Zitat Mayer JE, Fang GP, Kegg RL (1994) Effect of grit depth of cut on strength of ground ceramics. CIRP Ann - Manuf Techn 43(1):309–312CrossRef Mayer JE, Fang GP, Kegg RL (1994) Effect of grit depth of cut on strength of ground ceramics. CIRP Ann - Manuf Techn 43(1):309–312CrossRef
36.
Zurück zum Zitat Xu HHK, Jahanmir S, Ives LK (1997) Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Mach Sci Technol 1(1):49–66CrossRef Xu HHK, Jahanmir S, Ives LK (1997) Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Mach Sci Technol 1(1):49–66CrossRef
37.
Zurück zum Zitat Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew, Inc, Norwich Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew, Inc, Norwich
38.
Zurück zum Zitat Hwang TW, Malkin S (1999) Upper bound analysis for specific energy in grinding of ceramics. Wear 231:161–171CrossRef Hwang TW, Malkin S (1999) Upper bound analysis for specific energy in grinding of ceramics. Wear 231:161–171CrossRef
39.
Zurück zum Zitat Hecker RL, Liang S (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tool Manu 43(8):755–761CrossRef Hecker RL, Liang S (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tool Manu 43(8):755–761CrossRef
Metadaten
Titel
An improved chip-thickness model for surface roughness prediction in robotic belt grinding considering the elastic state at contact wheel-workpiece interface
verfasst von
Chao Qu
Yuanjian Lv
Zeyuan Yang
Xiaohu Xu
Dahu Zhu
Sijie Yan
Publikationsdatum
02.09.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04332-7

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.