Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 8/2022

20.02.2022 | Research Article-Computer Engineering and Computer Science

An Independent Constructive Multi-class Classification Algorithm for Predicting the Risk Level of Stress Using Multi-modal Data

verfasst von: P. B. Pankajavalli, G. S. Karthick

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, stress is being a root cause for many health issues, and the necessity of identifying the risk level of stress becomes crucial, which can able to assist the recommender systems by suggesting possible predictive solutions. Most of the decisions made by medical practitioners using the existing classification algorithms are entirely based on the normal and abnormal observations of the patient’s data. The existing algorithms work better for binary classification problems like discriminating the healthy subjects from the stress subjects. There is a mandatory requirement for multi-class classification algorithms which can identify the various risk level of stress. The existing multi-class classification algorithms fail to consider the relative closeness of the features. Also, the classification accuracy is considerably less and suffers from class imbalance issues. In this research paper, an independent constructive multi-class classification (ICMCC) algorithm is proposed to identify and classify the pattern that indicates the risk level of stress based on the relative closeness of features. The study used the synthetic minority over-sampling method to cope up with the class imbalance issue. The experimental study used the multi-modal stress dataset with four classes to evaluate and validate the proposed ICMCC algorithm. The performance of the proposed ICMCC algorithm is compared with the existing state-of-the-art multi-class classification algorithms using the metrics such as accuracy, error rate, precision, recall, and F1-score. From the experimental results, it can be concluded that the proposed algorithm is effective, and the performance is found to be better when compared to the existing multi-class classification algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aigrain, J.; Spodenkiewicz, M.; Dubuisson, S.; Detyniecki, M.; Cohen, D.; Chetouani, M.: Multimodal stress detection from multiple assessments. IEEE Trans. Aff. Comput. 9, 491–506 (2018)CrossRef Aigrain, J.; Spodenkiewicz, M.; Dubuisson, S.; Detyniecki, M.; Cohen, D.; Chetouani, M.: Multimodal stress detection from multiple assessments. IEEE Trans. Aff. Comput. 9, 491–506 (2018)CrossRef
2.
Zurück zum Zitat Healey, J.A.; Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6, 156–166 (2005)CrossRef Healey, J.A.; Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6, 156–166 (2005)CrossRef
3.
Zurück zum Zitat Jovanov, E.; O’Donnell Lords, A.; Raskovic, D.; Cox, P.G.; Adhami, R.; Andrasik, F.: Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng. Med. Biol. Mag. 22, 49–55 (2003)CrossRef Jovanov, E.; O’Donnell Lords, A.; Raskovic, D.; Cox, P.G.; Adhami, R.; Andrasik, F.: Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng. Med. Biol. Mag. 22, 49–55 (2003)CrossRef
4.
Zurück zum Zitat Muñoz-Organero, M.; Corcoba-Magaña, V.: Predicting upcoming values of stress while driving. IEEE Trans. Intell. Transp. Syst. 18, 1802–1811 (2017) CrossRef Muñoz-Organero, M.; Corcoba-Magaña, V.: Predicting upcoming values of stress while driving. IEEE Trans. Intell. Transp. Syst. 18, 1802–1811 (2017) CrossRef
6.
Zurück zum Zitat Sioni, R.; Chittaro, L.: Stress detection using physiological sensors. Computer 48(10), 26–33 (2015)CrossRef Sioni, R.; Chittaro, L.: Stress detection using physiological sensors. Computer 48(10), 26–33 (2015)CrossRef
7.
Zurück zum Zitat Nath, R.K.; Thapliyal, H.: Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Trans. Consumer Electron. 67(1), 30–39 (2021)CrossRef Nath, R.K.; Thapliyal, H.: Smart wristband-based stress detection framework for older adults with cortisol as stress biomarker. IEEE Trans. Consumer Electron. 67(1), 30–39 (2021)CrossRef
8.
Zurück zum Zitat Greene, S.; Thapliyal, H.; Caban-Holt, A.: A survey of affective computing for stress detection: evaluating technologies in stress detection for better health. IEEE Consumer Electron. Mag. 5, 44–56 (2016)CrossRef Greene, S.; Thapliyal, H.; Caban-Holt, A.: A survey of affective computing for stress detection: evaluating technologies in stress detection for better health. IEEE Consumer Electron. Mag. 5, 44–56 (2016)CrossRef
9.
Zurück zum Zitat Muralitharan, K.; Yun, S.; Jung, Y.M.: Improved clustering with firefly-optimization-based mobile data collector for wireless sensor networks. Int. J. Electron. Commun. 97, 242–251 (2018)CrossRef Muralitharan, K.; Yun, S.; Jung, Y.M.: Improved clustering with firefly-optimization-based mobile data collector for wireless sensor networks. Int. J. Electron. Commun. 97, 242–251 (2018)CrossRef
10.
Zurück zum Zitat Akella, A.; Singh, A.K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C.S.; Gustin, S.M.; Maharaj, S.; Lees, T.; Cao, Z.; Lin, C.T.: Classifying multi-level stress responses from brain cortical eeg in nurses and non-health professionals using machine learning auto encoder. IEEE J. Transl. Eng. Health Med. 9, 1–9 (2021)CrossRef Akella, A.; Singh, A.K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C.S.; Gustin, S.M.; Maharaj, S.; Lees, T.; Cao, Z.; Lin, C.T.: Classifying multi-level stress responses from brain cortical eeg in nurses and non-health professionals using machine learning auto encoder. IEEE J. Transl. Eng. Health Med. 9, 1–9 (2021)CrossRef
11.
Zurück zum Zitat Ciman, M.; Wac, K.: Individuals’ Stress assessment using human-smartphone interaction analysis. IEEE Trans. Aff. Comput. 9, 51–65 (2018)CrossRef Ciman, M.; Wac, K.: Individuals’ Stress assessment using human-smartphone interaction analysis. IEEE Trans. Aff. Comput. 9, 51–65 (2018)CrossRef
12.
Zurück zum Zitat Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Ry, S.D.; Cavallo, F.: Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 65, 1748–1758 (2018)CrossRef Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Ry, S.D.; Cavallo, F.: Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 65, 1748–1758 (2018)CrossRef
13.
Zurück zum Zitat Lisetti, C.L.; Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. J. Appl. Signal Process. 11, 1672–1687 (2004) Lisetti, C.L.; Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. J. Appl. Signal Process. 11, 1672–1687 (2004)
14.
Zurück zum Zitat Subhani, R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S.: Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 5, 13545–13556 (2017)CrossRef Subhani, R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S.: Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 5, 13545–13556 (2017)CrossRef
15.
Zurück zum Zitat Sharma, N.; Gedeon, T.: Objective measures sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Prog. Biomed. 108(3), 1287–1301 (2012)CrossRef Sharma, N.; Gedeon, T.: Objective measures sensors and computational techniques for stress recognition and classification: a survey. Comput. Methods Prog. Biomed. 108(3), 1287–1301 (2012)CrossRef
16.
Zurück zum Zitat Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14, 410–417 (2010)CrossRef Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14, 410–417 (2010)CrossRef
17.
Zurück zum Zitat Maxhuni, A.; Hernandez-Leal, P.; EnriqueSucar, L.; Osmani, V.; Eduardo Morales, F.; Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016)CrossRef Maxhuni, A.; Hernandez-Leal, P.; EnriqueSucar, L.; Osmani, V.; Eduardo Morales, F.; Mayora, O.: Stress modelling and prediction in presence of scarce data. J. Biomed. Inform. 63, 344–356 (2016)CrossRef
18.
Zurück zum Zitat Wiselin Jiji, G.: Identifying stage of alzheimer disease using multiclass particle swarm optimisation technique. J. Exp. Theor. Artif. Intell. 30, 911–925 (2018)CrossRef Wiselin Jiji, G.: Identifying stage of alzheimer disease using multiclass particle swarm optimisation technique. J. Exp. Theor. Artif. Intell. 30, 911–925 (2018)CrossRef
19.
Zurück zum Zitat ShenbagaPriya, V.; Ramyachitra, D.: Modified genetic algorithm (MGA) based feature selection with mean weighted least squares twin support vector machine (MW-LSTSVM) approach for vegetation classification. Clust. Comput. 22, 13569–13581 (2019)CrossRef ShenbagaPriya, V.; Ramyachitra, D.: Modified genetic algorithm (MGA) based feature selection with mean weighted least squares twin support vector machine (MW-LSTSVM) approach for vegetation classification. Clust. Comput. 22, 13569–13581 (2019)CrossRef
20.
Zurück zum Zitat Priya, A.; Garg, S.; Tigga, S.: Predicting anxiety, depression and stress in modern life using machine learning algorithms. Procedia Comput. Sci. 167, 1258–1267 (2020)CrossRef Priya, A.; Garg, S.; Tigga, S.: Predicting anxiety, depression and stress in modern life using machine learning algorithms. Procedia Comput. Sci. 167, 1258–1267 (2020)CrossRef
21.
Zurück zum Zitat Benzebouchi, N.D.; Azizi, N.; Ashour, A.S.; Dey, N.; Sherratt, R.S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. J. Exp. Theor. Artif. Intell. 31, 841–874 (2019)CrossRef Benzebouchi, N.D.; Azizi, N.; Ashour, A.S.; Dey, N.; Sherratt, R.S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. J. Exp. Theor. Artif. Intell. 31, 841–874 (2019)CrossRef
22.
Zurück zum Zitat Li, R.; Liu, W.; Lin, Y.; Zhao, H.; Zang, C.: An ensemble multilabel classification for disease risk prediction. J. Healthc. Eng. 2017, 1–10 (2017) Li, R.; Liu, W.; Lin, Y.; Zhao, H.; Zang, C.: An ensemble multilabel classification for disease risk prediction. J. Healthc. Eng. 2017, 1–10 (2017)
23.
Zurück zum Zitat Ge, R.; Zhang, R.; Wang, P.: Prediction of chronic diseases with multi-label neural network. IEEE Access 8, 138210–138216 (2020)CrossRef Ge, R.; Zhang, R.; Wang, P.: Prediction of chronic diseases with multi-label neural network. IEEE Access 8, 138210–138216 (2020)CrossRef
24.
Zurück zum Zitat Wang, L.; Han, M.; Li, X.; Zhang, N.; Cheng, H.: Review of classification methods on unbalanced data sets. IEEE Access 9, 64606–64628 (2020)CrossRef Wang, L.; Han, M.; Li, X.; Zhang, N.; Cheng, H.: Review of classification methods on unbalanced data sets. IEEE Access 9, 64606–64628 (2020)CrossRef
25.
Zurück zum Zitat Sun, Y.; Wong, A.K.C.; Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23, 687–719 (2019)CrossRef Sun, Y.; Wong, A.K.C.; Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23, 687–719 (2019)CrossRef
26.
Zurück zum Zitat Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybernet. 42, 463–484 (2012)CrossRef Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybernet. 42, 463–484 (2012)CrossRef
27.
Zurück zum Zitat Wang, S.; Yao, X.: Multi-class imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybernet. 42, 1119–1130 (2012)CrossRef Wang, S.; Yao, X.: Multi-class imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybernet. 42, 1119–1130 (2012)CrossRef
28.
Zurück zum Zitat Bi, J.; Zhang, C.: An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversifed ensemble learning scheme. Knowl. Based Syst. 15, 81–93 (2018)CrossRef Bi, J.; Zhang, C.: An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversifed ensemble learning scheme. Knowl. Based Syst. 15, 81–93 (2018)CrossRef
29.
Zurück zum Zitat Pankajavalli, P.B.; Karthick, G.S.; Sakthivel, R.: An efficient machine learning framework for stress prediction via sensor integrated keyboard data. IEEE Access 9, 95023–95035 (2021)CrossRef Pankajavalli, P.B.; Karthick, G.S.; Sakthivel, R.: An efficient machine learning framework for stress prediction via sensor integrated keyboard data. IEEE Access 9, 95023–95035 (2021)CrossRef
30.
Zurück zum Zitat Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D.: Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 11, 503–515 (2018) Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D.: Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 11, 503–515 (2018)
Metadaten
Titel
An Independent Constructive Multi-class Classification Algorithm for Predicting the Risk Level of Stress Using Multi-modal Data
verfasst von
P. B. Pankajavalli
G. S. Karthick
Publikationsdatum
20.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 8/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-06643-6

Weitere Artikel der Ausgabe 8/2022

Arabian Journal for Science and Engineering 8/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems

Research Article-Computer Engineering and Computer Science

Prostate Segmentation via Dynamic Fusion Model

Research Article-Computer Engineering and Computer Science

Arabic Handwritten Recognition Using Deep Learning: A Survey

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.